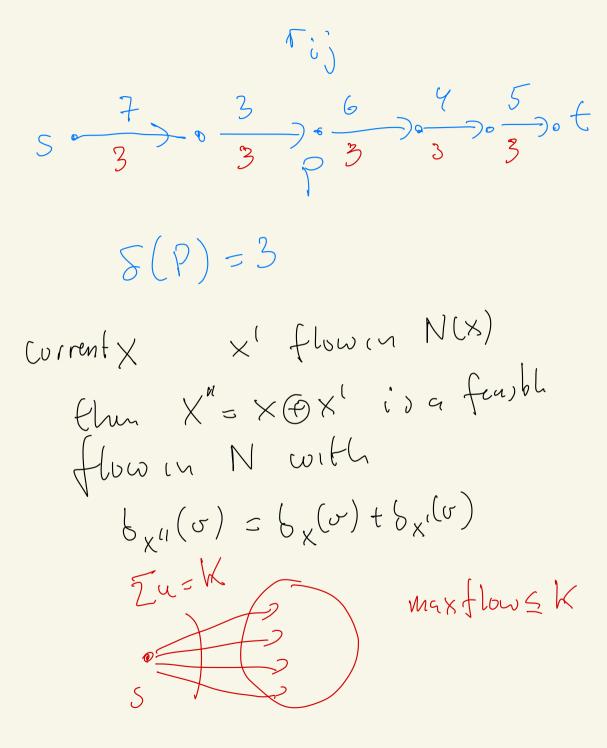
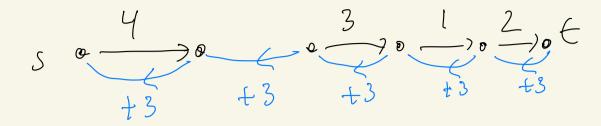


Thus I
Integrality theorem for (maximum)
(
$$s_i$$
t) flows:
Lef N = (Vubsitl, A, l=0, u) satisfy
that $u_{ij} \in \mathbb{Z}_t$ figeA.
Then N has integrabled flows
 $x_{0,1}x_1 \cdots x_k$ when
 k is the value of a maximum flow
in N and $N_{ij}(= i)$ ($|X| = b_X(s)$)
 $X_0 exists$ $X=0$ is a sort droin
 $N(x_0) = N$
if $k \ge 0$ then $\exists (s_it) - path P in N(s_i)$
 $S(P) = min capacity alons P:$



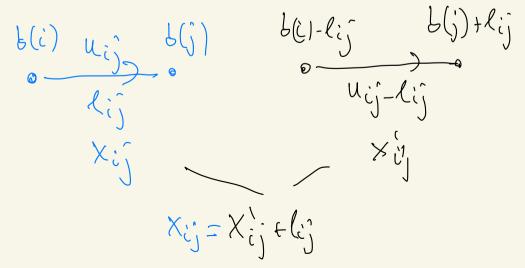
Note that if uijEZt tigeA and X is an integer flow 14 N(x) and X is integer flow in N thin X=XOX is an integration in N and all capacities in N(X) are integus. Recall Tij=(uij-Xij) + Xji Going from N(X) to N(x) (when X is a path flow from stot) $5 \xrightarrow{7} 3 \xrightarrow{6} 7 \xrightarrow{7} 7 \xrightarrow{7}$



Back to proof of Theorem I Soppon we have found xi ich let P be an (Set 1-path in N(xi) obtain Xiti by mains on unt along Ply N(X;)

Note that N(x) has all capacities integral (all in Zt). $\Gamma_{ij} = (u_{ij} - X_{ij}) + X_{ji}$

í f Corollary



$$\frac{b}{20} \qquad b=2 \qquad b<2$$