Condinatronal application of the max flow min cut theovern
The are-connectrvity from s to t in a digraph $D=(V, A)$ with $s, t \in V$, called $\lambda(s, t)$
is the maximum number of arc-disjoint (s,t)-pathsin D

Theorem(Menger)
Let $D=(V, A)$ be adisraphand
let $s, t \in V$. Then

$$
\lambda(s, t)=\min \left\{d^{t}(s) \mid s \in S, t \in V-s\right\}
$$

$p:$

$$
N(D)=\left\{V^{\prime} \cup\{s, t), A, \ell, u\right\}
$$

Claim: The maximum a value of an (s, t)-flow in $N(D)$ is $\lambda(s, t)$

$$
\max |x| \geq \lambda(s, t):
$$

Given $P_{1}, P_{L} \ldots P_{u}$ arc-disj (S, t) -paths in D
send 1 unit of flow alons each P_{i} in $N(D) \rightarrow$ gives a
fleas) th (s, t)-flow x with $|x|=k$

$$
\lambda(s, t) \geq\left|x^{*}\right|: \quad x^{k} \max \text { flow }
$$

Given an integer valued maximum flow x^{*}
Decompon x^{x} into path flows and cych flows $f\left(p_{1}^{1}\right) \ldots f\left(p_{\left|x^{*}\right|}\right), f\left(c_{1}\right) \cdots f\left(c_{T}\right.$ each P i is an (e, t-flow

Each p_{i} 'is a path (the samelin D and theyare arc-gisoint (Since $u_{i j}=1 \quad \forall i j \in A$)

$$
\underline{\lambda(s, t)}=\left|x^{*}\right|=u(s, \bar{s})=d^{t}(s)
$$

Internally disjoint (sitt-paths in disruphs

$X(0, t)=\max \#$ of internally dijoint $\left(s_{i} t\right)$-path
asoume s fot
$\frac{(s, t)-\text { senarator }}{D-X}$ is a not $X \subseteq V$-isitt s.t. D-X has no (s,ti-path
(that is, every (s,t)-path uns) at leart one vertox in X)
Clear:

$$
k(s, t) \leq \min \}|x| \mid X \text { isan }(s, t \mid-\operatorname{ses})
$$

Theorem (Hangs) $D=(V, A)$

$$
s, t \in V
$$

Soppon $s t \notin A$
Then $k(s, t)=\min \}|X||X(s, t \mid-88)|$

D

claim

$$
\begin{aligned}
\bar{k}(s, t)= & \max \text { value of an } \\
& \left(s^{\prime \prime}, t^{\prime}\right)-\text { flow in } N_{D}
\end{aligned}
$$

claim

$$
\begin{aligned}
k(s, t)= & \max \text { value of an } \\
& \left(s^{\prime \prime}, t^{\prime}\right)-\text { flow in } N_{D}
\end{aligned}
$$

$P: \leq$ Let P_{1}, \cdots, P_{q} be internally disjoint (s, t)-paths in D and let $P_{1}^{\prime}, \ldots, P_{f}^{\prime}$ be the corresponding paths in N_{D} send 10 nit along each P_{c}.

$$
\geq \text { Let } x^{R} \text { \& a max }\left(s^{\prime \prime}, t^{\prime}\right) \text {-flow }
$$ (integuvalued) x^{*} can se de conpond into $\left|x^{*}\right|$ path flows $f\left(Q_{1}\right) \ldots f\left(Q_{\left|x^{x}\right|}\right)$ and some cych flows each Q_{i}, Q_{j} ar intunally

So $k(s, t) \geq\left|x^{*}\right|$

$$
\begin{aligned}
k(s, t)=\left|x^{*}\right| & =u(s, \tilde{s}) \\
= & \# \text { share) form } \\
& s \text { to } \bar{s}
\end{aligned}
$$

each $a_{i} \Leftrightarrow$ Pavertos v_{i} ind and remouns $v_{1,} v_{L}, \ldots, v_{1 x^{x} \mid}$ kill, all (s, t)-paths in D

So $X=\left\{v_{1}, v_{2} \ldots v_{\left|x^{*}\right|} \mid\right.$ is an (s,t)-sensmber with $2 s(s, t)=|x|$

