

$$proputy 8.7 \quad m < 3n \quad (m \leq 3n - 6 alway)$$

P: suppon $m \ge 3n$ • Each cych has at least 3 cdse so $3f \le 2m$ • 2 = n - m + f by formula So if $m \ge 3n$ we set $n \le \frac{m}{3}$ and

$$2 = n - m + f$$

$$\leq \frac{m}{3} - m + \frac{2m}{3}$$

$$= 0$$

GD

$$\left(\mathsf{G}^{\mathsf{D}}\right)^{\mathsf{D}} = \mathsf{G}$$

assomption the source s and the sinkt are on the outer boundary

eh this edge from the dual of 1-1 correspondance Now then is a between (set)-cuts in G and (s*, E*) - paths in G* and $U(S,\overline{S}) = C(P_{stft}^{k})$ Pse is the Gett-path in GD that corresponds to the cut (S.S)

Obtains a max flow via.
distance labels in the dual (G*)

$$G^*=(V_i^*E^*)$$

 $d(j^*) = \text{lensthot shorts} (S^*_i)^* \cdot pettile G^*$
(*) $d(j^*| \leq d^*(C) + C_{i^*j^*} \quad \forall z^*_{i^*} \in E^*$
let $x_{ij} = d(j^*) - d(z^*) \quad \forall i j \in E$
when $i^*_{i^*} is$ the dual edge crossing ij
 $i \in j^*$ is the dual edge crossing if
 $i \in j^*$ is the dual edge crossing if
 $i \in j^* = j^*$ is the dual edge crossing if
 $i \in j^* = j^*$ is the dual edge crossing if
 $i \in j^* = j^*$ is the dual edge crossing if
 $i \in j^* = j^* = j^*$ is the dual edge crossing if
 $i \in j^* = j^* = j^* = j^*$ is the right when unoversite
 $i \in j^* = j^* =$

$$\begin{aligned} \chi_{ij} &= d(j^{\kappa}) - d(c^{\kappa}) \\ &\leq d(c^{\kappa}) + C_{i^{\kappa}j^{\kappa}} - d(c^{\kappa}) \\ &= C_{i^{\kappa}j^{\kappa}} = u_{ij} \in by \, dit \, of \, costs in \\ \end{bmatrix}$$

Hence X is feasible and we have

This way theresulture flow is never restrict and $0 \le x_{ij} \le u_{ij}$ holds

Checkins that
$$b_{X}(i) = 0$$
 for $i \neq s_{i}t$:
Conside the cut $(i', N-i)$
 $i \neq i \neq i$
The edges in G^{X} corresponding to the edges
incident with i forma cycle W^{X}
So $O = \sum_{i \neq i \neq W^{X}} (d(i^{X}) - d(i^{X}))$
 $i \neq i \neq i$
 $j \in E$
 $j \neq i \neq i$
 $j \neq i \neq i \neq i$
 $j \neq i$

Thus X isan(s,t)-flow.

