Abuja 8.4 Flows in planar undirected networks
$G=(V, E)$ is planar if we can draw it in the plan with no edge crossings

$f=\# f a c)$
$m=\#$ edge
$n=$ \#ratices

Euler' formula: $f=m-n+2$
'Check' $q=16-9+2$
proputy 8.7

$$
m<3 n \quad(m \leq 3 n-6 \text { alway) })
$$

$p:$ suppon $m \geq 3 n$

- Each cych harat least 3 edges
so $3 f \leq 2 m$
- $2=n-m+f$ by formula

So if $m \geq 3 n$ wesct $n \leq \frac{m}{3}$ and

$$
\begin{aligned}
2 & =n-m+f \\
& \leq \frac{m}{3}-m+\frac{2 m}{3} \\
& =0
\end{aligned}
$$

Doal of 6 : $\quad G^{D}$

$$
\left(G^{D}\right)^{D}=G
$$

G^{D} planar

Assumption the source sand the sinh are on the outer boundary

Cychin dual \in vertexpartion (cut) in 6

Transformuns min (s, t)-cert problem into a shorts patti problem:

set cost of edge $a \quad b$ equal to the capacity of the edge in G which it crosses:

deleh this edge from the decal of Gest
Now then is a 1-1 corropondaul sctucen (s, t)-cuts in G and
$\left(s^{*}, t^{*}\right)$-path) in G^{*} and

$$
u(s, \bar{s})=c\left(P_{s^{*} t^{*}}^{x}\right)
$$

when $P_{0,}^{*}$ is the (s, t) path in G^{D} that corresponds, to the ret (S, \bar{S})

Each $\left(s^{*}, t^{*}\right)$-path in recd corresponds to $\operatorname{an}(s, t)-\cot$ in G
Conclusion: we can furl a minimum $(s, t)-c n t$ in time $O(n \log n+m \log n)=O(n \log n)$ via Dijstrotr in Dual.
obtains a max flow via. distana labels in the dual (G*)

$$
\begin{aligned}
& G^{*}=\left(V_{1}^{*} E^{*}\right) \\
& \left.d\left(j^{*}\right)=\text { lens th ot shorhst }\left(s_{1}^{x}\right)^{x}\right) \text { - patin } G^{x}
\end{aligned}
$$

(*) $\quad d()^{*} \mid \leq d^{*}(i)+c_{i_{j}^{*}} \quad \forall \forall_{i j} j^{*} \in E^{*}$

$$
\text { Let } x_{i j}=d\left(j^{*}\right)-d\left(\iota^{*}\right) \quad \forall i j \in E
$$

when $i^{*} j^{*}$ is the dual edge crossing $i j$

L^{*} to the rishi when moving from itojin 6

$$
\begin{aligned}
x_{i j} & =d\left(j^{x}\right)-d\left(c^{x}\right) \\
& \leq d\left(c^{*}\right)+c_{i j} j^{x}-d\left(c^{x}\right) \\
& =c_{i^{x} j} j^{k}=u_{i j} \in \text { by }^{\prime} d e t \text { of } \operatorname{cost}_{G^{x}} \text { in }
\end{aligned}
$$

Hence x is fash and we have

$$
x_{i j}=-x_{j i}
$$

$$
x_{i j}=d\left(j^{x}\right)-d\left(i^{x}\right)
$$

$$
x_{j c}=d\left(x^{x}\right)-d\left(j^{x}\right)
$$

We intupret $x_{i j}<0$ as $x_{j i}>0$ and think of $i j$ oriental as $i<j$

This way therosulting flow is never negative and $0 \leq x_{i j} \leq u_{i j} h_{0}(d)$

Checkins that $\delta_{x}(i)=0$ for $i \neq s, t$:
consido the cut $(i, N-i)$

The edges in G^{x} correspondens to the (dye) inciont wath i forma cych W^{*} So

$$
\begin{aligned}
0 & =\sum_{i^{x} j^{*} \in W^{*}}\left(d\left(j^{x}\right)-d\left(i^{x}\right)\right) \\
& =\sum_{i j \in E} x_{i j} \\
& =b x^{(i)}
\end{aligned}
$$

Thus x is an (s, t)-flow. Maximums:
let P^{*} de a shorturt ($\left.s_{1}^{*} t^{\pi}\right)$-pathin σ^{x}
Then $d\left(j^{x}\right)-d\left(i^{x}\right)=c_{i^{x} j^{x}}=u_{i j} \forall \forall_{j}^{x_{j} \in \in A}\left(p^{*}\right)$

Each are $i j$ accoos the cot h_{n})

$$
x_{i j}=d\left(l^{*}\right)-d\left(i^{\lambda}\right)=c_{i j}^{* \cdot x}=u_{i j}
$$

so (S, \bar{S}) is a min cut and x is a max flow
Theorem 8.3 A maximum (s,t1-flow in a planar network can be found in time $O(n \log n)$ when sand tare on the bovndang

