
Exam problems for the course ’Network Programming’

(DM817) Part A

Department of Mathematics and Computer Science

University of Southern Denmark

The problems are published on Tuesday October 6, 2020. The solutions must be

returned by Tuesday November 3, 2020 at 16.00
You must hand in via SDU assignment in blackboard. You must specify your name

and the first 6 digits of your cpr number on the first page.

It is important that you explain how you obtain your answers and argue why they are
correct. If you are asked to describe an algorithm, then you must supply enough details so
that a reader who does not already know the algorithm can understand it (but you should not
give pseudo code). You should also give the complexity of the algorithm when relevant. Note
also that illustrating an algorithm means that one has to follow the steps of the algorithm
meticulously (slavisk). When you are asked to give the best complexity you can find for a
problem, you must say which (flow) algorithm you use to get that complexity and give a
reference to its complexity (in the book) or prove it directly. All algorithms asked for should
be polynomial in the size of the input. Unless otherwise stated the numbers n and m always
denote the number of vertices and arcs respectively of the network in question. Note that we
use ’⋄’ to denote the end of a (sub)question.

There are 100 points to earn in total for this part A of the problems. The second part
B which will be posed in the beginning of December. The final grade for the course will be
based on an overall impression of your performance on both sets of problems.

You may refer to results from Ahuja and Bang-Jensen and Gutin as well as
results from exercises that have been posed on the weekly notes, but not to
material found elsewhere (this includes exercises that we have not done in the
course). It is strictly forbidden to work in groups and any exchange of ideas and
results before the deadline for handing in will be considered as exam fraud.

1

PROBLEM 1 (15 point)

Let N = (V,A, ℓ ≡ 0, u) be the network in Figure 1. In the figure two flows x, x′ are indicated.

1

2

3

4

5

6

7

8

(4,0,0)
(5,0,4) (4,2,1)

(6,1,3)

(4,0,1)

(6,4,4)

(8,8,5)

(4,2,0)

(2,2,2)

(1,1,1)

(5,3,5)

(8,6,7)

(2,0,2)

(3,0,3)

(3,1,3)

(uij , xij , x
′

ij)

(2,0,0)

(5,2,2)

(7,7,4)

Figure 1: A network N and two flows x, x′ in N . The data on each arc is (uij , xij , x
′

ij).

Question a:

Give the values of the balance vectors bx and bx′ for x respectively x′ and explain (by describ-
ing, in words, an algorithm that works for any such pair of flows) how one can find a flow x̄

in N (x) (the residual network wrt x) such that x′ = x ⊕ x̄. You must give the definition of
‘⊕’. You should also illustrate your algorithm on the flows x, x′.

Question b:

Let N be a network with n vertices and m arcs. Explain briefly how to decompose a given
flow y in N into at most n+m path and cycle flows. Illustrate the algorithm on the flow x in
Figure 1. You should NOT draw a new figure for each step, but instead give a few steps and
then show a list of paths and cycle flows (including their values) which form a decomposition
of x.

2

Problem 2 (20 point)

s

1

2

3

4

5

6

t

20

7

18

5

3

2

10

8

6

7

10

10

20

5

18

Figure 2: The network N = (V ∪ {s, t}, A, ℓ ≡ 0, u)

Question a:

Illustrate the shortest augmenting path method for finding a maximum flow on the network
N in Figure 2. To ease the verification, you should choose the paths in lexicographic order
according to the vertices that appear on the paths (e.g., s → 1 → 5 → t is before s → 2 →
5 → t)

Question b:

Give a short but sufficient description of the preflow push algorithm. Remember to say how
you initialize the flow and other functions involved in the algorithm. You are not supposed
to argue why the algorithm is correct.

Question c:

Illustrate the algorithm by running it on the network in Figure 2. In order to make your
solution easy to check you should follow the following rules:

• Always select the smallest numbered vertex when selecting a vertex i with bx(i) < 0
and continue doing operations on this vertex until it becomes balanced.

• If there are several possible arcs ij for which the push operation may be performed, you
should choose j such that its number is as small as possible.

You may list a group of operations concerning the same vertex in one line, e.g. push 3
units from 2 to 4, push 4 units from 2 to 5, lift 2 to height 5, push 3 units from 2 to 7 etc.
and you only have to show the updated flow after such a group of operations.

3

Problem 3 (15 point)

(a) (b)

Figure 3: Two 7× 7 grids with special vertex sets Y marked in black. In (a) there exist a set
of escape routes, while no such set of routes exist in (b).

An q×q grid is an undirected graph, Gq,q, with q2 vertices denoted v1,1, . . . , v1,q, v2,1, . . . , vq,1, . . . , vq,q
and the edges formed by the q paths “horizontal” paths v1,1v1,2 . . . v1,q, . . . vq,1vq,2 . . . , vq,q and
the q “vertical” paths v1,1v2,1 . . . vq,1, . . . , v1,qv2,q . . . , vq,q. See Figure 3. We call the subset
V ′ = {vi,j : min{i, j} = 1 or max{i, j} = n} the edge of Gq,q.

Suppose that we are given r ≤ q2 distinct vertices vi1,j1 , . . . , vir ,jr of Gq,q. The goal is to
decide whether there exist r vertex disjoint paths P1, . . . , Pr so that Pk starts in vik,jk and
ends in a vertex belonging to the edge of the grid. This problem, which we call the escape
problem, is related to VLSI design and several other important problems.

Question a:

Show how to model the escape problem as a flow problem. You must argue that your model
is correct and explain how one can obtain a solution (when one exists) from a solution to
your flow problem. You should also show how to find a certificate for the non-existence of
the desired paths when they do not exist. Give the best complexity you can obtain for the
problem.

Question b:

Now we consider the following generalization of the escape problem: Find a collection of paths
P1, . . . , Pr from Y to V ′ so that the maximum number of paths intersecting in the same vertex
is minimized. So if there is a solution to the original escape problem, then this number will
be zero. Explain how to solve this generalization of the escape problem in polynomial time.

Question c:

Suppose none of the vertices Y = {vi1,j1 , . . . , vir ,jr} are on the edge of Gq,q (so Y ∩ V ′ = ∅)
and we wish to find a minimum cardinality set X of vertices of Gq,q so that X ∩ Y = ∅ and

4

Gq,q −X has no path from Y to V ′ (so every path from Y to the edge of Gq,q intersects X).
Note that we are not allowed to delete any vertex of Y and the set X always exists, since we
could remove the 4(q − 1) vertices on the edge of Gq,q. Explain how to solve this problem in
polynomial time using flows. Hint: use a modified version of vertex-splitting and suitable arc
capacities.

Problem 4 (20 point)

For each of the following claims you should argue why the claim is true. You may do this by
a short argument, e.g. using results from exercises that we have done or results from Ahuja
and Bang-Jensen+Gutin but you should supply enough details so that the validity of your
claim is easy to check.

1. One can find a minimum path cover in any acyclic digraph by solving a constant number
of maximum flow problems.

2. The buildup algorithm runs in polynomial time on unit capacity networks.

3. One can check the existence of a feasible flow in any unit capacity network
N = (V,A, ℓ ≡ 0, u ≡ 1, b) in time O(n

2

3m).

4. A digraph D = (V,A) has a cycle factor (a spanning collection of vertex-disjoint cycles)
if and only if there is no subset X ⊆ V such that X is independent (no arcs inside X)
and we can kill all paths from X to itself by deleting less than |X| vertices.

5. Let x be a feasible flow in N = (V,A, ℓ ≡ 0, u, b, c). Suppose that N (x) has precisely
one negative cycle W and that the cost of W is -10. Assume also that the minimum
residual capacity of an arc of W is 5, so δ(W) = 5. Then the flow x′ = x⊕ δ(W) that
we obtain by adding a cycle flow of value δ(W) along W in N (x) to x is a minimum
cost flow in N and its cost is cx′ = cx− 50.

5

Problem 5 (15 point)

In the present situation under Covid-19 the health authorities need all the help they can get
to maximize the capacity of the Corona test centers. Hence you have decided to use your
DM817 skills to help and you have gotten the task of devising an algorithm that can be
used for assigning the bookings to a test center to the different test teams in the center. We
assume that our test center has the capacity to run K parallel lines where people are tested
(in separate tents but in the same geographical location.) and that you are given a large set
S of bookings for the next day and your task is to schedule as many of these to the K test
tents as possible. Each booking is for a specific time, e.g 16.04 and we assume that each test
tent can handle two different bookings if they are at least 5 minutes apart.

Question a:

Explain how the problem of assigning bookings to test tents can be modeled as a path-
covering problem in an acyclic digraph D. Explain how one can see from this model whether
it is possible to handle all the bookings and describe a flow based method for finding a good
assignment or a certificate that no solution exists. ⋄

Suppose your algorithm determines that it is not possible to handle all the bookings, due
to too little capacity, either because there are to few tents or because it takes too long before
a new person can be tested in the same tent (recall that there must be 5 minutes between
consecutive tests in the same tent).

Question b:

First explain how to determine the minimum number K ′ of test tents (lines) that are needed
to process all the bookings (test all the persons who have a booking).

Question c:

Explain how you can augment your model so that you can determine the maximum number
of bookings can be handled with the present capacity. Hint: use minimum cost flows. What
is the complexity of your algorithm?

Question d:

Explain how you can use the buildup algorithm for minimum cost flows to solve the problem
of determining the maximum number of bookings you can handle if you open up i new tents
for each i = 1, 2, . . . ,K ′ −K. Express the complexity of your algorithm in terms of |S|, the
number of pairs of bookings that may be handled in the same tent and K ′

6

Problem 6 (15 point)

The health authorities (especially the minister of health) are impressed by your skills in
helping with the test center above, so they get the idea of asking you to optimize the test
center by devising an algorithm for constructing many disjoint test teams. Here we assume
that each test tent is run by two persons, one of type A and the other of type B, where the
type designates what the person is supposed to do during a test. No person is both of type
A and type B and we assume that we are given a set VA of n persons of type A, a set VB

of n persons of type B as well as a list of possible pairs ab where a ∈ VA, b ∈ VB who are
qualified to work together in a tent (how this is determined is not our concern). A collection
a1b1, . . . , apbp of pairs is good if ai 6= aj and bi 6= bj when i 6= j (no person chosen is in more
than one pair).

Question a:

Explain how to model the problem of selecting a good collection of maximum size as a bipartite
matching problem and describe a flow based algorithm for finding such a maximum collection
in polynomial time. You should argue why your algorithm is correct and give the running time
of your algorithm in terms of n and m, where m is the number of possible pairs. You should
also explain how one can certify that the collection returned by the algorithms is indeed of
maximum size. ⋄

Suppose that the maximum size, p, of a good collection is too small (the authorities want
to be able to run more than p tents in parallel) so you are given a set V ′

A of k new persons
of type A and a set V ′

B of k new persons of type B and you must try to use these together
with the persons you already have to find a good collection which is larger than p. Of course,
if there are possible pairs among the new persons, you can do this trivially, but even if there
are no such pairs, it may be possible to find a good collection which is larger then p.

Question b:

Suppose that k is much smaller than p. Explain how one can find a new good collection of
maximum size (much) faster than running the algorithm from Question a again on the sets
VA ∪ V ′

A, VB ∪ V ′

B and the possible pairs among these. Hint: show that you can find a good
collection of maximum size in time O(k(n′ +m′)), where n′ = n+ k and m′ ≤ m+2kn+ k2.

Question c:

Assume that before you were told that the number p of good pairs that you found was not
sufficient, you have already communicated the solution to the persons involved in the pairs.
In order to minimize confusion you should thus try to find a new maximum good collection
which shares as many pairs as possible with the collection of size p that you have already
found. Explain how this can be formulated as a minimum cost flow problem.

7

