1 Exam questions, DM839 summer 2014

- 1. Fundamental problems and bounds
 - Coupon collector
 - Hashing
 - Markov's inequality and Chebyshev's inequality
 - Chernoff bounds
- 2. Markov chains, definitions and properties
 - Digraph analogue
 - Ergodic Markov chains
 - Stationary distribution
 - Random walks in undirected graphs
 - Coupling of Markov chains.
- 3. Markov chains, applications in algorithm analysis
 - Analysis of 2-SAT and 3-SAT algorithm
 - Problem 4A and 4B from the project.
- 4. The Monte Carlo method
 - Randomized (ϵ, δ) -approximation algorithms
 - Approximate sampling.
 - The Markov chain Monte Carlo method
 - The Metropolis algorithm
- 5. The probabilistic method
 - Basic counting
 - Using expectation arguments
 - Derandomization using conditional expectations
 - Lovász local lemma
- 6. Color-coding
 - Basic idea, dynamic programming
 - Expected running time
 - Derandomization via perfect hash functions.
- 7. Examples of randomized algorithms
 - Finding hamiltonian cycles in random graphs
 - Finding a perfect matching in a regular bipartite graph
 - Packet routing in sparse networks
 - 2-SAT and 3-SAT algorithms