
Pairwise independence

Definition

The random variables X1,X2, . . . ,Xn are said to be pairwise
independent if, for all i 6= j and any values a, b

Pr((Xi = a) ∩ (Xj = b)) = Pr(Xi = a)Pr(Xj = b)

Pairwise independece is a much weaker requirement than mutual
independence.



Example: constructing pairwise independent bits

A random bit Y is uniform if Pr(Y = 0) = Pr(Y = 1) = 1
2 .

We show a method to derive m = 2b − 1 uniform and pairwise
independent bits from b mutually independent uniform random
bits X1, . . . ,Xb.
Enumerate the m = 2b − 1 nonempty subsets of {1, 2, . . . , b} in
some order and let Sj denote the jth subset.
Define Yj as

Yj =
(∑
i∈Sj

Xi

)
mod2.



Example: constructing pairwise independent bits

Lemma

The Yj are pairwise independent uniform bits.

Proof: We use the method of defered decissions to show that Yj is
a uniform bit. Let z be the largest element in Sj . Then whatever
the parity of the sum of the first |Sj | − 1 bits of Sj is the sum of
this number a and z will be 0, resp. one with probability 1

2 since z
is independent of the other bits in Sj and uniform.



Now let Yk and Yr be two of the random variables and let Sk ,Sr
be the corresponding sets. As Sr 6= Sk we can pick z ∈ Sr \ Sk .
Consider, for any values of c , d ∈ {0, 1}

Pr(Yr = d |Yk = c).

We claim that this equals 1
2 . Again we use defered decissions: After

revealing Sk ∪ Sr − {z} the variable Yk is determined but Yr is not
so conditioning on Yk = c does not change that Yr is equally likely
to be 0 as 1, since z is uniform and independent of all other bits.



We argued that Pr(Yr = d |Yk = c) = 1
2 . Hence

Pr((Yk = c) ∩ (Yr = d)) = Pr(Yr = d |Yk = c)Pr(Yk = c)

=
1

4
= Pr(Yr = d)Pr(Yk = c)

As this holds for all choices of k, r and all choices of c , d we have
proved pairwise independence.



Application: Derandomization an algorithm for large
cuts

Recall the randomized algorithm for finding as large cut in a graph
G = (V ,E ): assign each vertex v ∈ V a random color from {0, 1}
and keep all edges that are properly colored (with 0 and 1). The
expected size of this cut is m/2, where m = |E |.
Suppose now that we have Y1,Y2, . . . < Yn pairwise independent
bits, where n = |V |. Define the cut by putting all vertices with
Yi = 0 on one side and those with Yj = 1 on the other side.



How many edges cross the cut?
For each edge ij ∈ E let Zij the the random variable that is 1 if ij
crosses the cut and zero otherwise and let Z =

∑
ij∈E Zij be the

number of edges crossing the cut.
Since Yi and Yj are pairwise independent

Pr(Zij = 1) = Pr(Yi 6= Yj) =
1

2

So

E [Z ] = E
[∑
ij∈E

Zij

]
=
∑
ij∈E

E [Zij ] = m/2



How many random bits did we need? Only b = log2 (n + 1)! (we
need b such that 2b − 1 ≥ n)
By the probabilistic method, there is some setting of the b bits so
that the resulting Yi ’s define a cut with at least m/2 edges accross.
Thus we can try all the 2b = O(n) possible values of the b bits:
For a given choice of values to these

• Calculate the values of Y1,Y2, . . . ,Yn

• Run though all edges and keep those ij where Yi 6= Yj .

• If we get at least m/2 edges stop, otherwise take the next
choice of values for the b bits



Running time:

• It takes O(n) time to generate all the 2b different bit-settings.

• For a given bitstring (b-bits) we can find the values of each Yi

in time O(nb) = O(n log n).

• Now we can count edges accross (and find those) in time
O(m)

Altogether our algorithm finds a good cut in time O(n2 log n + nm)
The log n factor can be removed by ordering the vertices
appropriately (lexicographical ordering of subsets of {1, 2, . . . , b}).



Running time is worse than our derandomized algorithm using
conditional expectations!
BUT: this new algorithm can be parallellized easily: use n
processors, one for each setting of the b bits. This gives an O(m)
parallel algorithm, same complexity as the other derandomized
algorithm
If we used O(nm) processors, one per combination of an edge and
a setting of bits, we can decide, for each edge in constant time
whether it crosses the cut and then collect the results (one result
for each of the O(n) bit-settings) in time O(log n) (we can find the
sum of n numbers in time O(log n) using O(n) processors).



Perfect Hashing

Goal: Store a static disctionary of n items in a table of O(n)
space such that any search takes O(1) time.



Universal hash functions

Definition

Let U be a universe with |U| ≥ n and V = {0, 1, . . . , n − 1}. A
family of hash functions H from U to V is said to be k-universal
if, for any elements x1, x2, . . . , xk , when a hash function h is
chosen uniformly at random from H,

Pr(h(x1) = h(x2) = . . . = h(xk)) ≤ 1

nk−1
.



Example of 2-Universal Hash Functions

Universe U = {0, 1, 2, . . . ,m − 1}
Table keys V = {0, 1, 2, . . . , n − 1}, with m ≥ n.
A family of hash functions obtained by choosing a prime p ≥ m,

ha,b(x) = ((ax + b) mod p) mod n,

and taking the family

H = {ha,b | 1 ≤ a ≤ p − 1, 0 ≤ b ≤ p}.

Lemma

H is 2-universal.



Lemma

Assume that m elements are hashed into an n bin chain hashing
table, using a hash function h chosen uniformly at random from a
2-universal family. For an arbitrary element x, let X be the number
of items at the bin h(x).

E[X ] ≤
{

m
n if x 6∈ S
1 + m−1

n if x ∈ S .

Proof.

Let Xi = 1 if the i-th element of S is in the same bin as x and 0
otherwise. Pr(Xi = 1) ≤ 1/n
If x 6∈ S , E[X ] = E [

∑m
i=1 Xi ] =

∑m
i=1 E[Xi ] ≤ m/n,

If x ∈ S (assume x is s1),
E[X ] = E [

∑m
i=1 Xi ] = 1 +

∑m
i=2 E[Xi ] ≤ 1 + (m − 1)/n.



Lemma

If h ∈ H is chosen uniformly at random from a 2-universal family
of hash functions mapping the universe U to [0, n − 1], then for
any set S ⊂ U of size m, the probability of h being perfect is at
least 1/2 when n ≥ m2.

Proof.

Let s1, s2, . . . , sm be the m items of S . Let Xij be 1 if the
h(si ) = h(sj) and 0 otherwise. Let X =

∑
1≤i<j≤n Xij .

E[X ] = E

 ∑
1≤i<j≤n

Xij

 =
∑

1≤i<j≤m
E[Xij ] ≤

(
m

2

)
1

n
<

m2

2n
,

Markov’s inequality yields Pr(X ≥ m2/n) ≤ Pr(X ≥ 2E[X ]) ≤ 1
2 .

When n ≥ m2, Pr(X < 1) ≥ 1/2, and a randomly chosen hash
function is perfect with probability at least 1/2.



Theorem

The two-level approach gives a perfect hashing scheme for m items
using O(m) bins.

Level I: use a hash table with n = m. Let X be the number of
collisions,

Pr(X ≥ m2/n) ≤ Pr(X ≥ 2E[X ]) ≤ 1

2
.

When n = m, there exists a choice of hash function from the
2-universal family that gives at most m collisions.



Level II: Let ci be the number of items in the i-th bin. There are(ci
2

)
collisions between items in the i-th bin, thus

m∑
i=1

(
ci
2

)
≤ m.

For each bin with ci > 1 items, we find a second hash function
that gives no collisions using space c2i . The total number of bins
used is bounded above by

m +
m∑
i=1

c2i ≤ m + 2
m∑
i=1

(
ci
2

)
+

m∑
i=1

ci ≤ m + 2m + m = 4m.

Hence the total number of bins used is only O(m).



Families of k-perfect hash functions

Definition

A family of k-perfect hash functions from {1, 2, . . . , n} to
{1, 2, . . . , k}, where k < n is a family H of hash functions such
that for every subset S of {1, 2, . . . , n} with |S | = k at least one of
the hash functions h ∈ H is perfect on S , that is h is a 1-1 map of
S onto {1, 2, . . . , k}.

Theorem (Schmidt and Segal, 1990)

For all n, k with n > k there exists a k-perfect family H of hash
functions of size 2O(k) log2 n (we can specify each function in H
with O(k) + 2 log log n bits). For each function h ∈ H and
i ∈ {1, 2, . . . , n} we can calculate h(i) in O(1) time.



Derandomizing color-coding algorithms

What we need is a family of k-colorings of G such that for each
V ′ ⊂ V with |V ′| = k there is at least one of the colorings where
all vertices of V ′ receive distainct colors.
This is exactly the property of a k-perfect family of hash functions.
So the derandomization is done by going through the 2O(k) log2 n
different functions in such a familty and for each of these testing,
using e.g. the dynamic programming algorithm for k-path, whether
there is a colorful k-path.
Since H is k-perfect, if G does have a k-path, at least one of the
hash functions will reveal this path (it will become colorful).






