Pairwise independence

Definition

The random variables $X_1, X_2, ..., X_n$ are said to be **pairwise independent** if, for all $i \neq j$ and any values a, b

 $Pr((X_i = a) \cap (X_j = b)) = Pr(X_i = a)Pr(X_j = b)$

Pairwise independece is a much weaker requirement than mutual independence.

Example: constructing pairwise independent bits

A random bit Y is uniform if $Pr(Y = 0) = Pr(Y = 1) = \frac{1}{2}$. We show a method to derive $m = 2^b - 1$ uniform and pairwise independent bits from b mutually independent uniform random bits X_1, \ldots, X_b . Enumerate the $m = 2^b - 1$ nonempty subsets of $\{1, 2, \ldots, b\}$ in some order and let S_j denote the *j*th subset. Define Y_j as

 $Y_j = \left(\sum_{i \in S_j} X_i\right) \bmod 2.$

Example: constructing pairwise independent bits

Lemma

The Y_j are pairwise independent uniform bits.

Proof: We use the method of defered decissions to show that Y_j is a uniform bit. Let z be the largest element in S_j . Then whatever the parity of the sum of the first $|S_j| - 1$ bits of S_j is the sum of this number a and z will be 0, resp. one with probability $\frac{1}{2}$ since z is independent of the other bits in S_j and uniform.

Now let Y_k and Y_r be two of the random variables and let S_k, S_r be the corresponding sets. As $S_r \neq S_k$ we can pick $z \in S_r \setminus S_k$. Consider, for any values of $c, d \in \{0, 1\}$

$$Pr(Y_r = d | Y_k = c).$$

We claim that this equals $\frac{1}{2}$. Again we use deferred decissions: After revealing $S_k \cup S_r - \{z\}$ the variable Y_k is determined but Y_r is not so conditioning on $Y_k = c$ does not change that Y_r is equally likely to be 0 as 1, since z is uniform and independent of all other bits.

We argued that $Pr(Y_r = d | Y_k = c) = \frac{1}{2}$. Hence

$$Pr((Y_k = c) \cap (Y_r = d)) = Pr(Y_r = d|Y_k = c)Pr(Y_k = c)$$
$$= \frac{1}{4}$$
$$= Pr(Y_r = d)Pr(Y_k = c)$$

As this holds for all choices of k, r and all choices of c, d we have proved pairwise independence.

Application: Derandomization an algorithm for large cuts

Recall the randomized algorithm for finding as large cut in a graph G = (V, E): assign each vertex $v \in V$ a random color from $\{0, 1\}$ and keep all edges that are properly colored (with 0 and 1). The expected size of this cut is m/2, where m = |E|. Suppose now that we have $Y_1, Y_2, \ldots < Y_n$ pairwise independent bits, where n = |V|. Define the cut by putting all vertices with $Y_i = 0$ on one side and those with $Y_i = 1$ on the other side. How many edges cross the cut?

For each edge $ij \in E$ let Z_{ij} the the random variable that is 1 if ij crosses the cut and zero otherwise and let $Z = \sum_{ij \in E} Z_{ij}$ be the number of edges crossing the cut.

Since Y_i and Y_j are pairwise independent

$$\Pr(Z_{ij}=1) = \Pr(Y_i \neq Y_j) = \frac{1}{2}$$

So

$$E[Z] = E\left[\sum_{ij\in E} Z_{ij}\right] = \sum_{ij\in E} E[Z_{ij}] = m/2$$

How many random bits did we need? Only $b = \log_2 (n+1)!$ (we need b such that $2^b - 1 \ge n$) By the probabilistic method, there is some setting of the b bits so that the resulting Y_i 's define a cut with at least m/2 edges accross. Thus we can try all the $2^b = O(n)$ possible values of the b bits: For a given choice of values to these

- Calculate the values of Y_1, Y_2, \ldots, Y_n
- Run though all edges and keep those ij where $Y_i \neq Y_j$.
- If we get at least m/2 edges stop, otherwise take the next choice of values for the b bits

Running time:

- It takes O(n) time to generate all the 2^b different bit-settings.
- For a given bitstring (*b*-bits) we can find the values of each Y_i in time $O(nb) = O(n \log n)$.
- Now we can count edges accross (and find those) in time O(m)

Altogether our algorithm finds a good cut in time $O(n^2 \log n + nm)$ The log *n* factor can be removed by ordering the vertices appropriately (lexicographical ordering of subsets of $\{1, 2, ..., b\}$). Running time is worse than our derandomized algorithm using conditional expectations!

BUT: this new algorithm can be parallellized easily: use n processors, one for each setting of the b bits. This gives an O(m) parallel algorithm, same complexity as the other derandomized algorithm

If we used O(nm) processors, one per combination of an edge and a setting of bits, we can decide, for each edge in constant time whether it crosses the cut and then collect the results (one result for each of the O(n) bit-settings) in time $O(\log n)$ (we can find the sum of *n* numbers in time $O(\log n)$ using O(n) processors).

Perfect Hashing

Goal: Store a static disctionary of n items in a table of O(n) space such that any search takes O(1) time.

Universal hash functions

Definition

Let U be a universe with $|U| \ge n$ and $V = \{0, 1, ..., n-1\}$. A family of hash functions \mathcal{H} from U to V is said to be *k*-universal if, for any elements $x_1, x_2, ..., x_k$, when a hash function h is chosen uniformly at random from \mathcal{H} ,

$$\Pr(h(x_1) = h(x_2) = \ldots = h(x_k)) \le \frac{1}{n^{k-1}}.$$

Example of 2-Universal Hash Functions

Universe $U = \{0, 1, 2, ..., m-1\}$ Table keys $V = \{0, 1, 2, ..., n-1\}$, with $m \ge n$. A family of hash functions obtained by choosing a prime $p \ge m$,

 $h_{a,b}(x) = ((ax + b) \bmod p) \bmod n,$

and taking the family

$$\mathcal{H} = \{h_{a,b} \mid 1 \le a \le p - 1, 0 \le b \le p\}.$$

Lemma

 \mathcal{H} is 2-universal.

Lemma

Assume that m elements are hashed into an n bin chain hashing table, using a hash function h chosen uniformly at random from a 2-universal family. For an arbitrary element x, let X be the number of items at the bin h(x).

$$\mathsf{E}[X] \le \begin{cases} \frac{m}{n} & \text{if } x \notin S\\ 1 + \frac{m-1}{n} & \text{if } x \in S. \end{cases}$$

Proof.

Let $X_i = 1$ if the *i*-th element of *S* is in the same bin as *x* and 0 otherwise. $\Pr(X_i = 1) \le 1/n$ If $x \notin S$, $\mathbf{E}[X] = \mathbf{E}[\sum_{i=1}^{m} X_i] = \sum_{i=1}^{m} \mathbf{E}[X_i] \le m/n$, If $x \in S$ (assume *x* is s_1), $\mathbf{E}[X] = \mathbf{E}[\sum_{i=1}^{m} X_i] = 1 + \sum_{i=2}^{m} \mathbf{E}[X_i] \le 1 + (m-1)/n$.

Lemma

If $h \in \mathcal{H}$ is chosen uniformly at random from a 2-universal family of hash functions mapping the universe U to [0, n - 1], then for any set $S \subset U$ of size m, the probability of h being perfect is at least 1/2 when $n \ge m^2$.

Proof.

Let s_1, s_2, \ldots, s_m be the *m* items of *S*. Let X_{ij} be 1 if the $h(s_i) = h(s_j)$ and 0 otherwise. Let $X = \sum_{1 \le i \le j \le n} X_{ij}$.

$$\mathbf{E}[X] = \mathbf{E}\left[\sum_{1 \leq i < j \leq n} X_{ij}\right] = \sum_{1 \leq i < j \leq m} \mathbf{E}[X_{ij}] \leq \binom{m}{2} \frac{1}{n} < \frac{m^2}{2n},$$

Markov's inequality yields $Pr(X \ge m^2/n) \le Pr(X \ge 2E[X]) \le \frac{1}{2}$. When $n \ge m^2$, $Pr(X < 1) \ge 1/2$, and a randomly chosen hash function is perfect with probability at least 1/2.

Theorem

The two-level approach gives a perfect hashing scheme for m items using O(m) bins.

Level I: use a hash table with n = m. Let X be the number of collisions,

$$\Pr(X \ge m^2/n) \le \Pr(X \ge 2\mathbf{E}[X]) \le \frac{1}{2}.$$

When n = m, there exists a choice of hash function from the 2-universal family that gives at most m collisions.

Level II: Let c_i be the number of items in the *i*-th bin. There are $\binom{c_i}{2}$ collisions between items in the *i*-th bin, thus

$$\sum_{i=1}^m \binom{c_i}{2} \leq m.$$

For each bin with $c_i > 1$ items, we find a second hash function that gives no collisions using space c_i^2 . The total number of bins used is bounded above by

$$m + \sum_{i=1}^{m} c_i^2 \le m + 2\sum_{i=1}^{m} {c_i \choose 2} + \sum_{i=1}^{m} c_i \le m + 2m + m = 4m.$$

Hence the total number of bins used is only O(m).

Families of k-perfect hash functions

Definition

A family of *k*-perfect hash functions from $\{1, 2, ..., n\}$ to $\{1, 2, ..., k\}$, where k < n is a family \mathcal{H} of hash functions such that for every subset *S* of $\{1, 2, ..., n\}$ with |S| = k at least one of the hash functions $h \in \mathcal{H}$ is perfect on *S*, that is *h* is a 1-1 map of *S* onto $\{1, 2, ..., k\}$.

Theorem (Schmidt and Segal, 1990)

For all n, k with n > k there exists a k-perfect family \mathcal{H} of hash functions of size $2^{O(k)} \log^2 n$ (we can specify each function in \mathcal{H} with $O(k) + 2 \log \log n$ bits). For each function $h \in \mathcal{H}$ and $i \in \{1, 2, ..., n\}$ we can calculate h(i) in O(1) time.

Derandomizing color-coding algorithms

What we need is a family of *k*-colorings of *G* such that for each $V' \subset V$ with |V'| = k there is at least one of the colorings where all vertices of V' receive distainct colors.

This is exactly the property of a *k*-perfect family of hash functions. So the derandomization is done by going through the $2^{O(k)} \log^2 n$ different functions in such a familty and for each of these testing, using e.g. the dynamic programming algorithm for *k*-path, whether there is a colorful *k*-path.

Since \mathcal{H} is *k*-perfect, if *G* does have a *k*-path, at least one of the hash functions will reveal this path (it will become colorful).