
The Monte Carlo Method
Example: estimate the value of π.

• Choose X and Y independently and uniformly at random in
[0, 1].

• Let

Z =

{
1 if

√
X 2 + Y 2 ≤ 1,

0 otherwise,

• Pr(Z = 1) = π
4 .

• 4E[Z ] = π.



• Let Z1, . . . ,Zm be the values of m independent experiments.
W =

∑m
i=1 Zi .

•

E[W ] = E

[
m∑
i=1

Zi

]
=

m∑
i=1

E[Zi ] =
mπ

4
,

• W ′ = 4
mW is a natural estimate for π.

•

Pr(|W ′ − π| ≥ επ) = Pr
(
|W − mπ

4
| ≥ εmπ

4

)
= Pr (|W − E[W ]| ≥ εE[W ])

≤ 2e−
1

12
mπε2

.(Chernoff bound, Cor. 4.6)



(ε, δ)-Approximation

Definition

A randomized algorithm gives an (ε, δ)-approximation for the value
V if the output X of the algorithm satisfies

Pr(|X − V | ≤ εV ) ≥ 1− δ.

The method for approximating π gives an (ε, δ)-approximation as
long as ε < 1 and m is large enough to make

2e−mπε
2/12 ≤ δ

so we need

m ≥ 12 ln (2/δ)

πε2



Theorem

Let X1, . . . ,Xm be independent and identically distributed indicator

random variables, with µ = E [Xi ]. If m ≥ 3 ln 2
δ

ε2µ
, then

Pr

(∣∣∣∣∣ 1

m

m∑
i=1

Xi − µ

∣∣∣∣∣ ≥ εµ
)
≤ δ.

That is, m samples provide an (ε, δ)-approximation for µ.



Approximate Counting

Example counting problems:

1 How many spanning trees in a graph?

2 How many perfect matchings in a graph?



DNF Counting

DNF = Disjunctive Normal Form.
Problem: How many satisfying assignments to a DNF formula?
A DNF formula is a disjunction of clauses.
Each clause is a conjunction of literals.

(x1 ∧ x2) ∨ (x2 ∧ x3) ∨ (x1 ∧ x2 ∧ x3 ∧ x4) ∨ (x3 ∧ x4)

Compare to CNF.

(x1 ∨ x2) ∧ (x1 ∨ x3) ∧ · · ·

m clauses, n variables
Let’s first convince ourselves that obvious approaches don’t work!



DNF counting is hard

Question: Why?
We can reduce CNF satisfiability to DNF counting.
The negation of a CNF formula is in DNF.

1 CNF formula f

2 get the DNF formula (f̄ )

3 count satisfying assignments to f̄

4 This number is 2n if and only if f is unsatisfiable.



DNF counting is #P complete

#P is the counting analog of NP.
Any problem in #P can be reduced (in polynomial time) to the
DNF counting problem.
Example #P complete problems:

1 How many Hamilton circuits does a graph have?

2 How many satisfying assignments does a CNF formula have?

3 How many perfect matchings in a graph?

What can we do about a hard problem?



(ε, δ) FPRAS for DNF counting

FPRAS = “Fully Polynomial Randomized Approximation Scheme”
Notation:
U: set of all possible assignments to variables
|U| = 2n.
H ⊂ U: set of satisfying assignments
Want to estimate Y = |H|
Give ε > 0, δ > 0, find estimate X such that

1 Pr[|X − Y | > εY ] < δ

2 Algorithm should be polynomial in 1/ε, 1/δ, n and m.



Monte Carlo method

Here’s the obvious scheme (Algorithm 1, page 256 in book).
1. Repeat N times:

1.1. Sample x randomly from U, that is, generate one of the
2n possible assignments uniformly at random.

1.2. Count a success if x ∈ H (formula satisfied by x)
2. Return “fraction of successes”× |U|.
Question: How large should N be?
We have to evaluate the probability of our estimate being good.



Let ρ =
|H|
|U|

.

Let the indicator random variable Zi = 1 if i-th trial was
successful. Then

Zi =

{
1 with probability ρ

0 with probability 1− ρ

Z =
N∑
i=1

Zi is a binomial random variable whose expected value is

E [Z ] = Nρ

X =
Z

N
|U| is our estimate of |H|



Probability that our algorithm succeeds

Recall: X denotes our estimate of |H|.

Pr[(1− ε)|H| < X < (1 + ε)|H|]
= Pr[(1− ε)|H| < Z |U|/N < (1 + ε)|H|]
= Pr[(1− ε)Nρ < Z < (1 + ε)Nρ]

> 1− e−Nρε
2/3 − e−Nρε

2/2

> 1− 2e−Nρε
2/3

where we have used Chernoff bounds.
For an (ε, δ) approximation, this has to be greater than 1− δ,

2e−Nρε
2/3 < δ

N >
3

ρε2
log

2

δ



Theorem

Let ρ = |H|/|U|. Then the Monte Carlo method is an (ε, δ)
approximation scheme for estimating |H| provided that
N > 3

ρε2 log 2
δ .

Are we done? No!

Why?



What’s wrong?

How large could
1

ρ
be?

ρ is the fraction of satisfying assignments.

1 The number of possible assignments is 2n.

2 Maybe there are only a polynomial (in n) number of satisfying
assignments.

3 So,
1

ρ
could be exponential in n.

Question: An example where formula has only a few assignments?



The trick: Skewed sampling

Increase the hit rate (ρ)!
Sample from a different universe, ρ is higher, and all elements of H
still represented.

What’s the new universe?
Notation: Hi set of assignments that satisfy clause i .
H = H1 ∪ H2 ∪ . . .Hm

Define a new universe

U = H1

⊎
H2

⊎
. . .
⊎

Hm

⊎
means multiset union.



Example - Partition by clauses

(x1 ∧ x2) ∨ (x2 ∧ x3) ∨ (x1 ∧ x2 ∧ x3 ∧ x4) ∨ (x3 ∧ x4)

x1 x2 x3 x4 Clause

0 1 0 0 1
0 1 0 1 1
0 1 1 0 1
0 1 1 1 1

0 1 1 0 2
0 1 1 1 2
1 1 1 0 2
1 1 1 1 2

1 1 0 1 3

0 0 1 0 4
0 1 1 0 4
1 0 1 0 4
1 1 1 0 4



More about the universe U

1 U contains only the satisfying assignments.

2 U is a multiset (contains the same element many times).

3 Element of U is (v , i) where v is an assignment, i is the
satisfied clause.
U = {(v , i)|v ∈ Hi}

4 Each satisfying assignment v appears in as many clauses as it
satisfies.



One way of looking at U

Partition by clauses.
m partitions, partition i contains Hi .



Another way of looking at U

Partition by assignments (one region for each assignment v).
Each partition corresponds to an assignment.
Can we count the different (distinct) assignments?



Example - Partition by assignments

(x1 ∧ x2) ∨ (x2 ∧ x3) ∨ (x1 ∧ x2 ∧ x3 ∧ x4) ∨ (x3 ∧ x4)

x1 x2 x3 x4 Clause

0 0 1 0 4

0 1 0 0 1

0 1 0 1 1

0 1 1 0 1
0 1 1 0 2
0 1 1 0 4

0 1 1 1 1
0 1 1 1 2

1 0 1 0 4

1 1 0 1 3

1 1 1 0 2
1 1 1 0 4

1 1 1 1 2



Canonical element

Crucial idea: For each assignment group, find a canonical element
in U.
An element (v , i) is canonical if f ((v , i)) = 1

f ((v , i)) =

{
1 if i = min{j : v ∈ Hj}
0 otherwise

For every assignment group, exactly one canonical element.
So, count the number of canonical elements!
Note: could use any other definition as long as exactly one
canonical element per assignment



Count canonical elements

Reiterating:

1 Number of satisfying assignments =
Number of canonical elements.

2 Count number of canonical elements.

3 Back to old random sampling method for counting!



What is ρ?

Lemma

ρ ≥ 1

m
, (pretty large).

Proof.

|H| = | ∪mi=1 Hi |, since H is a normal union.
So |Hi | ≤ |H|
Recall U = H1

⊎
H2
⊎
. . .
⊎

Hm

|U| =
∑m

i=1 |Hi |, since U is a multiset union.
|U| ≤ m|H|

ρ =
|H|
|U|
≥ 1

m



How to generate a random element in U?

Look at the partition of U by clauses.
Algorithm Select:

1 Pick a random clause weighted according to the area it
occupies.

Pr[i ] =
|Hi |
|U|

=
|Hi |∑m
1 |Hj |

|Hi | = 2(n−ki ) where ki is the number of literals in clause i .

2 Choose a random satisfying assignment in Hi .

• Fix the variables required by clause i .
• Assign random values to the rest to get v

(v , i) is the random element.

Running time: O(n).



How to test if canonical assignment?

Or how to evaluate f ((v , i))?
Algorithm Test:

1 Test every clause to see if v satisfies it.
cov(v) = {(v , j)|v ∈ Hj}

2 If (v , i) the smallest in cov(v), then f (v , i) = 1, else 0.

Running time: O(nm).



Back to random sampling

Algorithm Coverage:

1 s ← 0 (number of successes)

2 Repeat N times:

• Select (v , i) using Select.
• if f (v , i) = 1 (check using Test) then success, increment s.

3 Return s|U|/N.

Number of samples needed is (from Theorem 3):

N =
3

ε2ρ
ln

2

δ
≤ 3m

ε2
ln

2

δ

Sampling, testing: polynomial in n and m
We have an FPRAS

Theorem

The Coverage algorithm yields an (ε, δ) approximation to |H|
provided that the number of samples N ≥ 3m

ε2 log 2
δ .



Counting Independent Sets

Input: a graph G = (V ,E ). |V | = n, |E | = m.
Let e1, . . . , em be an arbitrary ordering of the edges.

Gi = (V ,Ei ), where Ei = {e1, . . . , ei}

G = Gm, G0 = (V , ∅) and Gi−1 is obtained from Gi be removing a
single edge.
Ω(Gi ) = the set of independent sets in Gi .

|Ω(G )| =
|Ω(Gm)|
|Ω(Gm−1)|

×|Ω(Gm−1)|
|Ω(Gm−2)|

×|Ω(Gm−2)|
|Ω(Gm−3)|

×· · ·×|Ω(G1)|
|Ω(G0)|

×|Ω(G0)|.

ri =
|Ω(Gi )|
|Ω(Gi−1)|

, i = 1, . . . ,m.



Algorithm

Estimating ri
Input: Graphs Gi−1 = (V ,Ei−1) and Gi = (V ,Ei ).
Output: r̃i = an approximation of ri .

1 X ← 0.

2 Repeat for M = d1296m2ε−2 ln 2m
δ e independent trials:

1 Generate an uniform sample from Ω(Gi−1);
2 If the sample is an independent set in Gi , let X ← X + 1.

3 Return r̃i ← X
M .



Lemma

ri ≥ 1/2.

Proof.

Ω(Gi ) ⊆ Ω(Gi−1).

Suppose that Gi−1 and Gi differ in the edge {u, v}.
An independent set in Ω(Gi−1) \ Ω(Gi ) contains both u and v . To
bound the size of the set Ω(Gi−1) \ Ω(Gi ), we associate each
I ∈ Ω(Gi−1) \ Ω(Gi ) with an independent set I \ {v} ∈ Ω(Gi ). An
independent set I ′ ∈ Ω(Gi ) is associated with no more than one
independent set I ′ ∪ {v} ∈ Ω(Gi−1) \ Ω(Gi ), and thus
|Ω(Gi−1) \ Ω(Gi )| ≤ |Ω(Gi )|. It follows that

ri =
|Ω(Gi )|
|Ω(Gi−1)|

=
|Ω(Gi )|

|Ω(Gi )|+ |Ω(Gi−1) \ Ω(Gi )|
≥ 1/2.



Lemma

When m ≥ 1 and 0 < ε ≤ 1, the procedure for estimating ri yields
an estimate r̃i that is (ε/2m, δ/m)-approximation for ri .

• Our estimate is 2n
∏m

i=1 r̃i

• The true number is |Ω(G )| = 2n
∏m

i=1 ri .

• To evaluate the error in our estimate we need to bound the
ratio

R =
m∏
i=1

r̃i
ri
.



Lemma

Suppose that for all i , 1 ≤ i ≤ m, r̃i is an
(ε/2m, δ/m)-approximation for ri . Then

Pr(|R − 1| ≤ ε) ≥ 1− δ.

Proof: For each 1 ≤ i ≤ m, we have

Pr
(
|r̃i − ri | ≤

ε

2m
ri

)
≥ 1− δ

m
.

Equivalently,

Pr
(
|r̃i − ri | >

ε

2m
ri

)
<

δ

m
.



By the union bound the probability that |r̃i − ri | > ε
2m ri for any i is

at most δ, and hence |r̃i − ri | ≤ ε
2m ri for all i with probability at

least 1− δ. Equivalently,

1− ε

2m
≤ r̃i

ri
≤ 1 +

ε

2m

holds for all i with probability at least 1− δ. When these bounds
hold for all i , we can combine them to obtain

1− ε ≤
(

1− ε

2m

)m
≤

m∏
i=1

r̃i
ri
≤
(

1 +
ε

2m

)m
≤ (1 + ε),



Estimating ri
Input: Graphs Gi−1 = (V ,Ei−1) and Gi = (V ,Ei ).
Output: r̃i = an approximation of ri .

1 X ← 0.

2 Repeat for M = d1296m2ε−2 ln 2m
δ e independent trials:

1 Generate an uniform sample from Ω(Gi−1);
2 If the sample is an independent set in Gi , let X ← X + 1.

3 Return r̃i ← X
M .



Definition

Let w be the (random) output of a sampling algorithm for a finite
sample space Ω. The sampling algorithm generates an ε-uniform
sample of Ω if, for any subset S of Ω,∣∣∣∣Pr(w ∈ S)− |S |

|Ω|

∣∣∣∣ ≤ ε.
A sampling algorithm is a fully polynomial almost uniform sampler
(FPAUS) for a problem if, given an input x and a parameter ε > 0,
it generates an ε-uniform sample of Ω(x), and it runs in time
polynomial in ln ε−1 and the size of the input x .



Estimating ri
Input: Graphs Gi−1 = (V ,Ei−1) and Gi = (V ,Ei ).
Output: r̃i = an approximation of ri .

1 X ← 0.

2 Repeat for M = d1296m2ε−2 ln 2m
δ e independent trials:

1 Generate an ε
6m -uniform sample from Ω(Gi−1);

2 If the sample is an independent set in Gi , let X ← X + 1.

3 Return r̃i ← X
M .

Lemma

When m ≥ 1 and 0 < ε ≤ 1, the procedure for estimating ri yields
an (ε/2m, δ/m)-approximation for ri



How do we Generate an ε
6m -uniform sample from Ω(Gi−1)?



From Approximate Sampling to Approximate
Counting

Theorem

Given a fully polynomial almost uniform sampler (FPAUS) for
independent sets in any graph, we can construct a fully polynomial
randomized approximation scheme (FPRAS) for the number of
independent sets in a graph G with maximum degree at most ∆.



The Markov Chain Monte Carlo Method

Idea: define an ergodic Markov chain whose stationary distribution
is the desired probability distribution.
Let X0,X1,X2, . . . ,Xn be the run of the chain.
The Markov chain converges to its stationary distribution from any
starting state X0 so after some sufficiently large number r of steps,
the distribution at of the state Xr will be close to the stationary
distribution π of the Markov chain.
Now, repeating with Xr as the starting point we can use X2r as a
sample etc.
So Xr ,X2r , x3r , . . . can be used as almost independent samples
from π.



N(x)− set of neighbors of x . Let M ≥ maxx∈Ω |N(x)|.

Lemma

Consider a Markov chain where for all x and y with y 6= x,
Px ,y = 1

M if y ∈ N(x), and Px ,y = 0 otherwise. Also,

Px ,x = 1− |N(x)|
M . If this chain is irreducible and aperiodic, then

the stationary distribution is the uniform distribution.

Proof.

We show that the chain is time-reversible, and apply Theorem
7.10. For any x 6= y , if πx = πy , then

πxPx ,y = πyPy ,x ,

since Px ,y = Py ,x = 1/M. It follows that the uniform distribution
πx = 1/|Ω| is the stationary distribution.



Sampling a uniform distribution on the independent
sets

Consider a Markov chain whose states are independent sets in a
graph G = (V ,E ):

1 X0 is an arbitrary independent set in G .

2 To compute Xi+1:

1 Choose a vertex v uniformly at random from V .
2 If v ∈ Xi then Xi+1 = Xi \ {v};
3 if v 6∈ Xi , and adding v to Xi still gives an independent set,

then Xi+1 = Xi ∪ {v};
4 otherwise, Xi+1 = Xi .

• The chain is irreducible

• The chain is aperiodic (as G has at least one edge)

• For y 6= x , Px ,y = 1/|V | or 0.

The lemma implies that the stationary distribution is the uniform
distribution.



The Metropolis Algorithm

Assuming that we want to sample with non-uniform distribution.
For example, we want the probability of an independent set of size
i to be proportional to λi .
Consider a Markov chain on independent sets in G = (V ,E ):

1 X0 is an arbitrary independent set in G .

2 To compute Xi+1:

1 Choose a vertex v uniformly at random from V .
2 If v ∈ Xi then set Xi+1 = Xi \ {v} with probability min(1, 1/λ);
3 if v 6∈ Xi , and adding v to Xi still gives an independent set,

then set Xi+1 = Xi ∪ {v} with probability min(1, λ);
4 otherwise, set Xi+1 = Xi .



Lemma

For a finite state space Ω, let M ≥ maxx∈Ω |N(x)|. For all x ∈ Ω,
let πx > 0 be the desired probability of state x in the stationary
distribution. Consider a Markov chain where for all x and y with
y 6= x,

Px ,y =
1

M
min

(
1,
πy
πx

)
if y ∈ N(x), and Px ,y = 0 otherwise. Further,
Px ,x = 1−

∑
y 6=x Px ,y . Then if this chain is irreducible and

aperiodic, the stationary distribution is given by the probabilities
πx .



Proof.

We show the chain is time-reversible. For any x 6= y , if πx ≤ πy ,
then Px ,y = 1 and Py ,x = πx/πy . It follows that πxPx ,y = πyPy ,x .
Similarly, if πx > πy , then Px ,y = πy/πx and Py ,x = 1, and it
follows that πxPx ,y = πyPy ,x .

Note that the Metropolis Algorithm only needs the ratios πx/πy ’s.
In our construction, the probability of an independent set of size i
is λi/B for B =

∑
x λ

size(x) although we may not know B.


