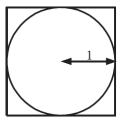
The Monte Carlo Method

Example: estimate the value of π .



- Choose X and Y independently and uniformly at random in [0, 1].
- Let

$$Z = \begin{cases} 1 & \text{if } \sqrt{X^2 + Y^2} \le 1, \\ 0 & \text{otherwise,} \end{cases}$$

- $\Pr(Z=1) = \frac{\pi}{4}$.
- $4\mathbf{E}[Z] = \pi$.

• Let Z_1, \ldots, Z_m be the values of m independent experiments. $W = \sum_{i=1}^m Z_i.$

$$\mathbf{E}[W] = \mathbf{E}\left[\sum_{i=1}^{m} Z_i\right] = \sum_{i=1}^{m} \mathbf{E}[Z_i] = \frac{m\pi}{4},$$

• $W' = \frac{4}{m}W$ is a natural estimate for π .

•

$$\begin{aligned} \mathsf{Pr}(|W' - \pi| \ge \epsilon \pi) &= \mathsf{Pr}\left(|W - \frac{m\pi}{4}| \ge \frac{\epsilon m\pi}{4}\right) \\ &= \mathsf{Pr}\left(|W - \mathsf{E}[W]| \ge \epsilon \mathsf{E}[W]\right) \\ &\le 2\mathrm{e}^{-\frac{1}{12}m\pi\epsilon^2}.(\mathsf{Chernoff bound, Cor. 4.6}) \end{aligned}$$

(ϵ, δ) -Approximation

Definition

A randomized algorithm gives an (ϵ, δ) -approximation for the value V if the output X of the algorithm satisfies

$$\Pr(|X - V| \le \epsilon V) \ge 1 - \delta.$$

The method for approximating π gives an (ϵ, δ) -approximation as long as $\epsilon < 1$ and m is large enough to make

$$2e^{-m\pi\epsilon^2/12} \leq \delta$$

so we need

$$m \geq \frac{12\ln\left(2/\delta\right)}{\pi\epsilon^2}$$

Theorem

Let X_1, \ldots, X_m be independent and identically distributed indicator random variables, with $\mu = E[X_i]$. If $m \ge \frac{3 \ln \frac{2}{\delta}}{\epsilon^2 \mu}$, then

$$\Pr\left(\left|\frac{1}{m}\sum_{i=1}^{m}X_{i}-\mu\right|\geq\epsilon\mu\right)\leq\delta.$$

That is, **m** samples provide an (ϵ, δ) -approximation for μ .

Approximate Counting

Example counting problems:

- 1 How many spanning trees in a graph?
- **2** How many perfect matchings in a graph?

DNF Counting

DNF = Disjunctive Normal Form.Problem: How many satisfying assignments to a DNF formula?A DNF formula is a disjunction of clauses.Each clause is a conjunction of literals.

 $(\overline{x_1} \wedge x_2) \vee (x_2 \wedge x_3) \vee (x_1 \wedge x_2 \wedge \overline{x_3} \wedge x_4) \vee (x_3 \wedge \overline{x_4})$

Compare to CNF.

 $(x_1 \lor x_2) \land (x_1 \lor \overline{x_3}) \land \cdots$

m clauses, *n* variables

Let's first convince ourselves that obvious approaches don't work!

DNF counting is hard

Question: Why? We can reduce CNF satisfiability to DNF counting. The negation of a CNF formula is in DNF.

- 1 CNF formula f
- **2** get the DNF formula (\overline{f})
- **3** count satisfying assignments to \overline{f}
- 4 This number is 2^n if and only if f is unsatisfiable.

DNF counting is #P complete

#P is the counting analog of NP.

Any problem in #P can be reduced (in polynomial time) to the DNF counting problem.

Example #P complete problems:

- 1 How many Hamilton circuits does a graph have?
- 2 How many satisfying assignments does a CNF formula have?
- **3** How many perfect matchings in a graph?

What can we do about a hard problem?

(ϵ, δ) FPRAS for DNF counting

FPRAS = "Fully Polynomial Randomized Approximation Scheme" Notation:

U: set of all possible assignments to variables

 $|U| = 2^{n}$.

 $H \subset U$: set of satisfying assignments

Want to estimate Y = |H|

Give $\epsilon > 0, \delta > 0$, find estimate X such that

 $\Pr[|X - Y| > \epsilon Y] < \delta$

2 Algorithm should be polynomial in $1/\epsilon$, $1/\delta$, *n* and *m*.

Monte Carlo method

Here's the obvious scheme (Algorithm 1, page 256 in book).

- 1. Repeat *N* times:
 - 1.1. Sample x randomly from U, that is, generate one of the 2^n possible assignments uniformly at random.
 - 1.2. Count a success if $x \in H$ (formula satisfied by x)
- 2. Return "fraction of successes" $\times |U|$.

Question: How large should N be?

We have to evaluate the probability of our estimate being good.

Let $\rho = \frac{|H|}{|U|}$.

Let the indicator random variable $Z_i = 1$ if *i*-th trial was successful. Then

$$Z_i = egin{cases} 1 & ext{with probability} &
ho \ 0 & ext{with probability} & 1-
ho \end{cases}$$

 $Z = \sum_{i=1}^{N} Z_i \text{ is a binomial random variable whose expected value is}$ $E[Z] = N\rho$ $X = \frac{Z}{N}|U| \text{ is our estimate of } |H|$

Probability that our algorithm succeeds

Recall: X denotes our estimate of |H|.

$$\begin{aligned} & \Pr[(1-\epsilon)|H| < X < (1+\epsilon)|H|] \\ &= \Pr[(1-\epsilon)|H| < Z|U|/N < (1+\epsilon)|H|] \\ &= \Pr[(1-\epsilon)N\rho < Z < (1+\epsilon)N\rho] \\ &> 1 - e^{-N\rho\epsilon^2/3} - e^{-N\rho\epsilon^2/2} \\ &> 1 - 2e^{-N\rho\epsilon^2/3} \end{aligned}$$

where we have used Chernoff bounds.

For an (ϵ, δ) approximation, this has to be greater than $1 - \delta$,

$$\frac{2e^{-N\rho\epsilon^2/3} < \delta}{N > \frac{3}{\rho\epsilon^2}\log\frac{2}{\delta}}$$

Theorem

Let $\rho = |H|/|U|$. Then the Monte Carlo method is an (ϵ, δ) approximation scheme for estimating |H| provided that $N > \frac{3}{\rho\epsilon^2} \log \frac{2}{\delta}$.

What's wrong?

How large could $\frac{1}{\rho}$ be?

ho is the fraction of satisfying assignments.

1 The number of possible assignments is 2^n .

2 Maybe there are only a polynomial (in *n*) number of satisfying assignments.

3 So,
$$\frac{1}{\rho}$$
 could be exponential in *n*.

Question: An example where formula has only a few assignments?

The trick: Skewed sampling

Increase the hit rate $(\rho)!$

Sample from a different universe, ρ is higher, and all elements of H still represented.

What's the new universe?

Notation: H_i set of assignments that satisfy clause *i*.

 $H = H_1 \cup H_2 \cup \ldots H_m$

Define a new universe

 $U = H_1 \biguplus H_2 \biguplus \ldots \biguplus H_m$

+ means *multiset union*.

Example - Partition by clauses

 $(\overline{x_1} \wedge x_2) \vee (x_2 \wedge x_3) \vee (x_1 \wedge x_2 \wedge \overline{x_3} \wedge x_4) \vee (x_3 \wedge \overline{x_4})$

<i>x</i> ₁	<i>x</i> ₂	<i>x</i> 3	<i>x</i> ₄	Clause
0	1	0	0	1
0	1	0	1	1
0	1	1	0	1
0	1	1	1	1
0	1	1	0	2
0	1	1	1	2
1	1	1	0	2
1	1	1	1	2
1	1	0	1	3
0	0	1	0	4
0	1	1	0	4
1	0	1	0	4
1	1	1	0	4

More about the universe U

- 1 U contains only the satisfying assignments.
- **2** U is a multiset (contains the same element many times).
- Element of U is (v, i) where v is an assignment, i is the satisfied clause.

 $U = \{(v, i) | v \in H_i\}$

G Each satisfying assignment v appears in as many clauses as it satisfies.

One way of looking at U

Partition by clauses. *m* partitions, partition *i* contains H_i .

Another way of looking at U

Partition by assignments (one region for each assignment v). Each partition corresponds to an assignment. Can we count the different (distinct) assignments?

Example - Partition by assignments

 $(\overline{x_1} \wedge x_2) \vee (x_2 \wedge x_3) \vee (x_1 \wedge x_2 \wedge \overline{x_3} \wedge x_4) \vee (x_3 \wedge \overline{x_4})$

<i>x</i> ₁	<i>x</i> ₂	<i>x</i> 3	<i>x</i> 4	Clause
0	0	1	0	4
0	1	0	0	1
0	1	0	1	1
0	1	1	0	1
0	1	1	0	2
0	1	1	0	4
0	1	1	1	1
0	1	1	1	2
1	0	1	0	4
1	1	0	1	3
1	1	1	0	2
1	1	1	0	4
1	1	1	1	2

Canonical element

Crucial idea: For each assignment group, find a canonical element in U.

An element (v, i) is canonical if f((v, i)) = 1

$$f((v,i)) = egin{cases} 1 & ext{if } i = \min\{j: v \in H_j\} \ 0 & ext{otherwise} \end{cases}$$

For every assignment group, exactly one canonical element. So, count the number of canonical elements! Note: could use any other definition as long as exactly one canonical element per assignment

Count canonical elements

Reiterating:

- Number of satisfying assignments = Number of canonical elements.
- 2 Count number of canonical elements.
- **3** Back to old random sampling method for counting!

What is ρ ?

Lemma

$$\rho \geq \frac{1}{m}$$
, (pretty large).

Proof.

 $\begin{aligned} |H| &= |\bigcup_{i=1}^{m} H_i|, \text{ since } H \text{ is a normal union.} \\ \text{So } |H_i| &\leq |H| \\ \text{Recall } U &= H_1 \biguplus H_2 \biguplus \dots \oiint H_m \\ |U| &= \sum_{i=1}^{m} |H_i|, \text{ since } U \text{ is a multiset union.} \\ |U| &\leq m|H| \\ \rho &= \frac{|H|}{|U|} \geq \frac{1}{m} \end{aligned}$

How to generate a random element in U?

Look at the partition of U by clauses. Algorithm Select:

Pick a random clause weighted according to the area it occupies.

$$\Pr[i] = \frac{|H_i|}{|U|} = \frac{|H_i|}{\sum_{1}^{m} |H_j|}$$

 $|H_i| = 2^{(n-k_i)}$ where k_i is the number of literals in clause *i*.

- **2** Choose a random satisfying assignment in H_i .
 - Fix the variables required by clause *i*.
 - Assign random values to the rest to get v

(v, i) is the random element.

Running time: O(n).

How to test if canonical assignment?

Or how to evaluate f((v, i))? Algorithm Test:

1 Test every clause to see if v satisfies it. $cov(v) = \{(v, j) | v \in H_j\}$

2 If (v, i) the smallest in cov(v), then f(v, i) = 1, else 0. Running time: O(nm).

Back to random sampling

Algorithm Coverage:

- 1 $s \leftarrow 0$ (number of successes)
- 2 Repeat N times:
 - Select (v, i) using **Select**.
 - if f(v, i) = 1 (check using **Test**) then success, increment *s*.
- 3 Return s|U|/N.

Number of samples needed is (from Theorem 3):

$$N = \frac{3}{\epsilon^2 \rho} \ln \frac{2}{\delta} \le \frac{3m}{\epsilon^2} \ln \frac{2}{\delta}$$

Sampling, testing: polynomial in n and mWe have an FPRAS

Theorem

The Coverage algorithm yields an (ϵ, δ) approximation to |H| provided that the number of samples $N \geq \frac{3m}{\epsilon^2} \log \frac{2}{\delta}$.

Counting Independent Sets

Input: a graph G = (V, E). |V| = n, |E| = m. Let e_1, \ldots, e_m be an arbitrary ordering of the edges.

 $G_i = (V, E_i)$, where $E_i = \{e_1, ..., e_i\}$

 $G = G_m$, $G_0 = (V, \emptyset)$ and G_{i-1} is obtained from G_i be removing a single edge. $\Omega(G_i) =$ the set of independent sets in G_i .

$$|\Omega(G)| = \frac{|\Omega(G_m)|}{|\Omega(G_{m-1})|} \times \frac{|\Omega(G_{m-1})|}{|\Omega(G_{m-2})|} \times \frac{|\Omega(G_{m-2})|}{|\Omega(G_{m-3})|} \times \cdots \times \frac{|\Omega(G_1)|}{|\Omega(G_0)|} \times |\Omega(G_0)|.$$

$$r_i = \frac{|\Omega(G_i)|}{|\Omega(G_{i-1})|}, \qquad i = 1, \ldots, m.$$

Algorithm

Estimating r_i **Input:** Graphs $G_{i-1} = (V, E_{i-1})$ and $G_i = (V, E_i)$. **Output:** $\tilde{r}_i =$ an approximation of r_i .

1 $X \leftarrow 0$.

- **2** Repeat for $M = \lceil 1296m^2 \epsilon^{-2} \ln \frac{2m}{\delta} \rceil$ independent trials:
 - **1** Generate an uniform sample from $\Omega(G_{i-1})$;
 - 2 If the sample is an independent set in G_i , let $X \leftarrow X + 1$.
- **3** Return $\tilde{r}_i \leftarrow \frac{X}{M}$.

 $r_i \geq 1/2.$

Proof.

 $\Omega(G_i) \subseteq \Omega(G_{i-1}).$

Suppose that G_{i-1} and G_i differ in the edge $\{u, v\}$. An independent set in $\Omega(G_{i-1}) \setminus \Omega(G_i)$ contains both u and v. To bound the size of the set $\Omega(G_{i-1}) \setminus \Omega(G_i)$, we associate each $l \in \Omega(G_{i-1}) \setminus \Omega(G_i)$ with an independent set $l \setminus \{v\} \in \Omega(G_i)$. An independent set $l' \in \Omega(G_i)$ is associated with no more than one independent set $l' \cup \{v\} \in \Omega(G_{i-1}) \setminus \Omega(G_i)$, and thus $|\Omega(G_{i-1}) \setminus \Omega(G_i)| \leq |\Omega(G_i)|$. It follows that

$$r_i = rac{|\Omega(G_i)|}{|\Omega(G_{i-1})|} = rac{|\Omega(G_i)|}{|\Omega(G_i)| + |\Omega(G_{i-1}) \setminus \Omega(G_i)|} \geq 1/2.$$

When $m \ge 1$ and $0 < \epsilon \le 1$, the procedure for estimating r_i yields an estimate \tilde{r}_i that is $(\epsilon/2m, \delta/m)$ -approximation for r_i .

- Our estimate is $2^n \prod_{i=1}^m \tilde{r}_i$
- The true number is $|\Omega(G)| = 2^n \prod_{i=1}^m r_i$.
- To evaluate the error in our estimate we need to bound the ratio

$$R=\prod_{i=1}^m\frac{\tilde{r}_i}{r_i}.$$

Suppose that for all $i, 1 \le i \le m$, \tilde{r}_i is an $(\epsilon/2m, \delta/m)$ -approximation for r_i . Then

 $\Pr(|R-1| \le \epsilon) \ge 1-\delta.$

Proof: For each $1 \leq i \leq m$, we have

$$\Pr\left(|\tilde{r}_i - r_i| \le \frac{\epsilon}{2m}r_i\right) \ge 1 - \frac{\delta}{m}.$$

Equivalently,

$$\Pr\left(|\tilde{r}_i-r_i|>\frac{\epsilon}{2m}r_i\right)<\frac{\delta}{m}.$$

By the union bound the probability that $|\tilde{r}_i - r_i| > \frac{\epsilon}{2m}r_i$ for any *i* is at most δ , and hence $|\tilde{r}_i - r_i| \le \frac{\epsilon}{2m}r_i$ for all *i* with probability at least $1 - \delta$. Equivalently,

$$1 - \frac{\epsilon}{2m} \le \frac{\tilde{r}_i}{r_i} \le 1 + \frac{\epsilon}{2m}$$

holds for all *i* with probability at least $1 - \delta$. When these bounds hold for all *i*, we can combine them to obtain

$$1-\epsilon \leq \left(1-\frac{\epsilon}{2m}\right)^m \leq \prod_{i=1}^m \frac{\tilde{r}_i}{r_i} \leq \left(1+\frac{\epsilon}{2m}\right)^m \leq (1+\epsilon),$$

Estimating r_i

Input: Graphs $G_{i-1} = (V, E_{i-1})$ and $G_i = (V, E_i)$. **Output:** $\tilde{r}_i =$ an approximation of r_i .

1 $X \leftarrow 0$.

2 Repeat for $M = \lfloor 1296m^2 \epsilon^{-2} \ln \frac{2m}{\delta} \rfloor$ independent trials:

1 Generate an uniform sample from $\Omega(G_{i-1})$;

2 If the sample is an independent set in G_i , let $X \leftarrow X + 1$.

3 Return $\tilde{r}_i \leftarrow \frac{X}{M}$.

Definition

Let w be the (random) output of a sampling algorithm for a finite sample space Ω . The sampling algorithm generates an ϵ -uniform sample of Ω if, for any subset S of Ω ,

$$\Pr(w \in S) - \frac{|S|}{|\Omega|} \le \epsilon.$$

A sampling algorithm is a *fully polynomial almost uniform sampler* (*FPAUS*) for a problem if, given an input x and a parameter $\epsilon > 0$, it generates an ϵ -uniform sample of $\Omega(x)$, and it runs in time polynomial in $\ln \epsilon^{-1}$ and the size of the input x.

Estimating r_i **Input:** Graphs $G_{i-1} = (V, E_{i-1})$ and $G_i = (V, E_i)$. **Output:** $\tilde{r}_i =$ an approximation of r_i .

Lemma

When $m \ge 1$ and $0 < \epsilon \le 1$, the procedure for estimating r_i yields an $(\epsilon/2m, \delta/m)$ -approximation for r_i

How do we Generate an $\frac{\epsilon}{6m}$ -uniform sample from $\Omega(G_{i-1})$?

From Approximate Sampling to Approximate Counting

Theorem

Given a fully polynomial almost uniform sampler (FPAUS) for independent sets in any graph, we can construct a fully polynomial randomized approximation scheme (FPRAS) for the number of independent sets in a graph G with maximum degree at most Δ .

The Markov Chain Monte Carlo Method

Idea: define an ergodic Markov chain whose stationary distribution is the desired probability distribution.

Let $X_0, X_1, X_2, \ldots, X_n$ be the run of the chain.

The Markov chain converges to its stationary distribution from any starting state X_0 so after some sufficiently large number r of steps, the distribution at of the state X_r will be close to the stationary distribution π of the Markov chain.

Now, repeating with X_r as the starting point we can use X_{2r} as a sample etc.

So $X_r, X_{2r}, x_{3r}, \ldots$ can be used as almost independent samples from π .

N(x) - set of neighbors of x. Let $M \ge \max_{x \in \Omega} |N(x)|$.

Lemma

Consider a Markov chain where for all x and y with $y \neq x$, $P_{x,y} = \frac{1}{M}$ if $y \in N(x)$, and $P_{x,y} = 0$ otherwise. Also, $P_{x,x} = 1 - \frac{|N(x)|}{M}$. If this chain is irreducible and aperiodic, then the stationary distribution is the uniform distribution.

Proof.

We show that the chain is time-reversible, and apply Theorem 7.10. For any $x \neq y$, if $\pi_x = \pi_y$, then

$$\pi_{x}P_{x,y}=\pi_{y}P_{y,x},$$

since $P_{x,y} = P_{y,x} = 1/M$. It follows that the uniform distribution $\pi_x = 1/|\Omega|$ is the stationary distribution.

Sampling a uniform distribution on the independent sets

Consider a Markov chain whose states are independent sets in a graph G = (V, E):

- 1 X_0 is an arbitrary independent set in G.
- **2** To compute X_{i+1} :
 - 1 Choose a vertex v uniformly at random from V.
 - **2** If $v \in X_i$ then $X_{i+1} = X_i \setminus \{v\}$;
 - if v ∉ X_i, and adding v to X_i still gives an independent set, then X_{i+1} = X_i ∪ {v};
 - 4 otherwise, $X_{i+1} = X_i$.
 - The chain is irreducible
 - The chain is aperiodic (as G has at least one edge)
- For $y \neq x$, $P_{x,y} = 1/|V|$ or 0.

The lemma implies that the stationary distribution is the uniform distribution.

The Metropolis Algorithm

Assuming that we want to sample with non-uniform distribution. For example, we want the probability of an independent set of size i to be proportional to λ^{i} .

Consider a Markov chain on independent sets in G = (V, E):

1 X_0 is an arbitrary independent set in G.

- **2** To compute X_{i+1} :
 - 1 Choose a vertex v uniformly at random from V.
 - 2 If $v \in X_i$ then set $X_{i+1} = X_i \setminus \{v\}$ with probability $\min(1, 1/\lambda)$;
 - if v ∉ X_i, and adding v to X_i still gives an independent set, then set X_{i+1} = X_i ∪ {v} with probability min(1, λ);
 - 4 otherwise, set $X_{i+1} = X_i$.

For a finite state space Ω , let $M \ge \max_{x \in \Omega} |N(x)|$. For all $x \in \Omega$, let $\pi_x > 0$ be the desired probability of state x in the stationary distribution. Consider a Markov chain where for all x and y with $y \ne x$,

$$P_{x,y} = rac{1}{M} \min\left(1, rac{\pi_y}{\pi_x}
ight)$$

if $y \in N(x)$, and $P_{x,y} = 0$ otherwise. Further, $P_{x,x} = 1 - \sum_{y \neq x} P_{x,y}$. Then if this chain is irreducible and aperiodic, the stationary distribution is given by the probabilities π_x .

Proof.

We show the chain is time-reversible. For any $x \neq y$, if $\pi_x \leq \pi_y$, then $P_{x,y} = 1$ and $P_{y,x} = \pi_x/\pi_y$. It follows that $\pi_x P_{x,y} = \pi_y P_{y,x}$. Similarly, if $\pi_x > \pi_y$, then $P_{x,y} = \pi_y/\pi_x$ and $P_{y,x} = 1$, and it follows that $\pi_x P_{x,y} = \pi_y P_{y,x}$.

Note that the Metropolis Algorithm only needs the ratios π_x/π_y 's. In our construction, the probability of an independent set of size *i* is λ^i/B for $B = \sum_x \lambda^{size(x)}$ although we may not know *B*.