Martingales

A sequence of random variables Zy, Z1, ... is a martingale with
respect to the sequence Xg, X1, ... if for all n > 0 the following
hold:

® Z, is a function of Xp, X1,..., X;;

® E[|Z,|] < o0;

9 E[Zn+1‘X07X1, Ce ,Xn] = Zn;

Definition
A sequence of random variables 7y, 73, ... is a martingale when it
is a martingale with respect to itself, that is

® E[|Z,]] < o0;

®E[Z,.120,2,....2,] = Zy;



Example

| play series of fair games (win with probability 1/2).
Game 1: bet $1.

Game i > 1: bet 2 if won in round i — 1; bet i otherwise.
X; = amount won in ith game. (X; < 0 if ith game lost).

Z; = total winnings at end of /ith game.



Example

X; = amount won in ith game. (X; < 0 if /th game lost).
Z; = total winnings at end of ith game.

Z1,2Z>, ... is martingale with respect to X1, Xo, ...

E[Xi] =0.

E[Z] =Y E[X] =0 < oc.



Doob Martingale

Let Xp, X1, ..., X, be sequence of random variables. Let Y be a
random variable with E[|Y|] < co. In general Y is a function of
X1, X, .. Xn.

Let Z; = E[Y‘Xo,Xl,.. . ,X,'], i=0,1,...,n
20,21, ..., 2Z, is martingale with respect to Xp, X1,..., X,.

(Often Zy = E[Y].)



Proof

E[E[V|U, W]|W] = E[V|W].

Z,‘ = E[Y|X0,X1,...,X,‘], i:O,l,...,n

E[Zit1Xo, X1,..., Xi] = E[E[Y|Xo, X1, ..., Xi+1]|Xo, X1, ..., X]]
E[Y[Xo0, X1, ..., Xi]
= Z.



Example: Edge Exposure Martingale

Let G random graph from G, ,. Consider m = (g) possible edges
in arbitrary order.

1 if ith edge is present

Xi = .
0 otherwise

F(G) = size maximum clique in G.

Zo = E[F(G)]

Z,' = E[F(G)|X1/X2 .. ../X,'], for i = 1, ceey M.

20,21, ...,Zm is a Doob martingale.

(F(G) could be any finite-valued function on graphs.)



Back to Gambling

| play series of fair games (win with probability 1/2).

Game 1: bet $1.

Game i > 1: bet 2/ if | won in round i — 1; bet i otherwise.
X; = amount won in ith game. (X; < 0 if ith game lost).
Z; = total winnings at end of /th game.

Assume that (before starting to play) | decide to quit after k
games: what are my expected winnings?



If 2y, 21, ..., Z, is a martingale with respect to Xy, X1, ..., X,,
then

E[Z,] = E[Z].

Proof.

Since Z; defines a martingale

Z;i = E[Zi11|X0, X1, ..., Xi].

Then
E[Zi] = E[E[Z; 11| X0, X1, - - ., Xi]] = E[Zi11].



Back to Gambling

| play series of fair games (win with probability 1/2).

Game 1: bet $1.

Game i > 1: bet 2/ if | won in round i — 1; bet i otherwise.
X; = amount won in ith game. (X; < 0 if ith game lost).
Z; = total winnings at end of ith game.

Assume that (before starting to gamble) we decide to quit after k
games: what are my expected winnings?

E[Z] = E[Z] = 0.



A Different Strategy

Same gambling game. What happens if I:
e play a random number of games?

e decide to stop only when | have won (or lost) $1000?



Stopping Time

Definition

A non-negative, integer random variable T is a stopping time for
the sequence Zp, Z1, ... if the event “T = n" depends only on the
value of random variables 7y, 71, ..., Z,.

Intuition: corresponds to a strategy for determining when to stop a
sequence based only on values seen so far.

In the gambling game:
e first time | win 10 games in a row: is a stopping time;

e the last time when | win: is not a stopping time.



Consider again the gambling game: let T be a stopping time.
Z; = total winnings at end of /th game.

What are my winnings at the stopping time, i.e. E[Z7]?



Consider again the gambling game: let T be a stopping time.
Z; = total winnings at end of ith game.
What are my winnings at the stopping time, i.e. E[Z7]?

Fair game: E[Z7]| = E[Z] = 07



Consider again the gambling game: let T be a stopping time.
Z; = total winnings at end of /th game.

What are my winnings at the stopping time, i.e. E[Z7]?

Fair game: E[Z7] = E[Zy] = 07

“T=first time my total winnings are at least $1000" is a stopping
time, and E[Z7] > 1000...



Consider again the gambling game: let T be a stopping time.
Z; = total winnings at end of ith game.

What are my winnings at the stopping time, i.e. E[Z7]7

Fair game: E[Z7]| = E[Z] = 07

“T=first time my total winnings are at least $1000" is a stopping
time, and E[Z7] > 1000...

This is a particular stopping time: it may not be finite!



Martingale Stopping Theorem

Theorem

If Zy, Z1, ... is a martingale with respect to X1, Xo,... and if T is
a stopping time for X1, X5, ... then

E[Z7] = E[Z]

whenever one of the following holds:
e there is a constant c such that, for all i,
e T is bounded;

e E[T] < oo, and there is a constant c such that
E[‘Zi+1 = Z,‘HXl, L ,X,'] <cC.

Zi| <c;



Example: The Gambler's Ruin

Consider a sequence of independent, two players, fair
gambling games.

In each round a player wins a dollar with probability 1/2 or
loses a dollar with probability 1/2.

X; = amount won by player 1 on /th round.

If player 1 has lost in round i: X; < 0.

Z; = total amount won by player 1 after ith rounds.

Zy = 0.

Player 1 must end the game if she loses /1 dollars (Z; = —/1);
player 2 must terminate when she loses /5 dollars (Z; = (5).

q = probability that the game ends with player 1 wining />
dollars.



Example: The Gambler's Ruin

T = first time player 1 wins /> dollars or loses /1 dollars.
T is a stopping time for X1, X5, .. ..

2y, 21, ... is a martingale.

Z;'s are bounded.

Martingale Stopping Theorem: E[Z7] = E[Zy] = 0.

E[Zr] =gl —(1—q)l1 =0

U+ b

q



Example: A Ballot Theorem

Candidate A and candidate B run for an election.
Candidate A gets a votes.

Candidate B gets b votes.

a>b.

Votes are counted in random order: chosen from all
permutations on n = a + b votes.

What is the probability that A is always ahead in the count?



Example: A Ballot Theorem

Sk = number of votes A is leading by after k votes counted (if
A is trailing: S, < 0).

S,=a—b.
Sn—k
For0 <k <n-—-1: Xy ==
Consider Xy, X1, ..., X,. It relates to the counting process in

backwards order.

E[X«| X0, X1,. .., Xk—1] =7



Example: A Ballot Theorem

E[Xc|Xo, X1, ..., Xk_1] =7

e Conditioning on Xp, X1, ..., Xk_1: equivalent to conditioning
on S,,5,-1,...,5,_k+1, equivalent on conditioning on values
of count when counting k — 1 last votes.

e a, = number of votes for A after first k votes are counted.
e b, = number of votes for B after first k votes are counted.

Conditioning on S, 41 1:

_ank41tbakprtan ki1 —bpky1r  n—k+1+5, k1
an—k+1 = 5 = >

b ap—k41+ boky1 — (An—k41 — bn—ky1)  n—k+1— S5 4
n—k+l = 5 = 5




Example: A Ballot Theorem

e n— k + 1th vote: random vote among these first n — k + 1
votes.

S | Sn—ks1+1 if n— k+ 1th vote is for B
nok Sn—ky1—1 if n— k+ 1th vote is for A

n_k+1_5nfk+l

O R e =
n—k+1+5S, xi1
_ -1
+ (5,, k+1 ) 2(n—k+1)

n—k

= S -
n k+1n_k+1



Example: A Ballot Theorem

n—k
E[S,- n— = 9n— 7 1
[Sh—k|Sn—k41] = S e
Sn—k
E[Xk| X0, X1,..., Xk-1] = E Pa— Snyeooy Sn—kti]
_ Sn—k+1
n—k+1
= Xk-1

Xo, X1,...,X, is a martingale.



Example: A Ballot Theorem

min{k : Xx = 0} if such k exists
T = .
n—1 otherwise

e T is a stopping time.
e T is bounded.

e Martingale Stopping Theorem:

E[X7] = E[Xo] = E[f”] = Z

Two cases:
@ A leads throughout the count.
® A does not lead throughout the count.



Example: A Ballot Theorem

@ A leads throughout the count.
ForO<k<n-—1:5,_x >0, then X, > 0.

T=n-1.
XT:X,-,_1:51.

A gets the first vote in the count: S; = 1, then X+ = 1.



Example: A Ballot Theorem

® A does not lead throughout the count.

A leads at the end. If at a certain point B leads, at a certain
moment k: S, = 0. Then X, = 0.

T=k<n-—1.

Xt =0.



Example: A Ballot Theorem

Putting it all together:

@ A leads throughout the count: X+ = 1.
® A does not lead throughout the count: X+ =20

E[X7] = z; Z — 1Pr(Case 1) + OPr(Case 2).

That is
a—>b

Pr(A leads throughout the count) = pory




A Different Gambling Game

Two stages:
@ roll one die; let X be the outcome;

® roll X standard dice; your gain Z is the sum of the outcomes
of the X dice.

What is your expected gain?



Wald's Equation

Theorem

Let X1, X5, ... be nonnegative, independent, identically distributed
random variables with distribution X. Let T be a stopping time for
this sequence. If T and X have bounded expectation, then
T
2%
i

E = E[T]E[X].

Corollary of the martingale stopping theorem.



Stopping Time: Sequence of Independent r.v.

Definition

Let Zy, Z1,... be a sequence of independent random variables. A
nonnegative, integer-valued random variable T is a stopping time
for the sequence if the event “T = n" is independent of

Zn+1a Zn+27 0o oo



A Different Gambling Game

Two stages:
@ roll one die; let X be the outcome;

@® roll X standard dice; your gain Z is the sum of the outcomes
of the X dice.

What is your expected gain?

Y; = outcome of ith die in second stage.

X

YV

i=1

E[Z] =E

X is a stopping time for Y1, Yo, . ...

By Wald's equation:

E[2] = E[XE[Y/] = (;)



Example
n servers: each has queue with packets to send.

Time divided in discrete slots; servers send packets to
communicate.

Communicate through shared channel:
o if exactly 1 packet sent in time slot, transmission is successful;
e if > 1 packet sent in time slot, none is successful.

At each time slot:

e if queue is not empty, the first packet in the queue with
probability %

Assume: Queues are never empty.

Expected number of time slots until each server successfully sends
at least one packet?



T = number of time slots until each server successfully sends at
least one packet.

N = number of packets successfully sent until each server has
successfully sent at least one packet.

t; = time slot 7th successfully transmitted packet is sent. tg = 0.

i =t — tiy1.

T:Zr,-.

i=1



N = number of packets successfully sent until each server has
successfully sent at least one packet.

t; = time slot /th successfully transmitted packet is sent. tg = 0.
ri =t — tit1.

Easy to check that:
e /\ is independent of rp, ry,...;
e E[N] < <.

Then N is a stopping time for ry, r1,. ...

E[T] =E [ r,-] = E[N]E[r].

i=1



p = probability a packet successfully sent in a time slot

(R

ri: geometric random variable G(p).

E[rij=1/p~e.
N = number of packets successfully sent until each server has
successfully sent at least one packet.
Coupon collector: E[N] = nH(n) = nInn+ O(n).

N

E[T]=E [Z ] = E[N]E[r] =

i=1

~ enlnn.

nH(n)
p



Tail Inequalities

Theorem (Azuma-Hoeffding Inequality)

Let Zy, Z1,...,Z, be a martingale such that
| Zk — Zk—1| < k.
Then, for all t > 0 and any A > 0

Pr(|Z: — Zo| > A) < 2e/(k=1€0),



Tail Inequalities: A More General Form

Theorem (Azuma-Hoeffding Inequality)

Let Zy, /1, ..., Z, be a martingale such that
Bk < Zy — Zy—1| < Bi +

for some constants c; and for some random variables B that may
be functions of Xo, X1,...,Xx_1. Then, for all t > 0 and any
A>0

Pr(|Z; — Zo| > X) < 267 2/(Zia D),



Tail Inequalities: Doob Martingales

Let Xi,..., X, be sequence of random variables.

Random variable Y
e Y is a function of X1, Xo, ..., Xy;
e E[|Y]] < .

Let Z; = E[Y‘Xl,...,X,'], i=0,1,...,n.
20,21, . ..,2Z, is martingale with respect to Xy, ..., X,.
If we can use Azuma-Hoeffding inequality:

Pr(|Zy — Zo| = \) < e(A,...)

that is

Pr(|Y — E[Y]| > \) < e(\,...).



A General Formalization

f(X1, Xa,...,X,) satisfies Lipschitz condition with bound c if for
any i and any set of values x1,...,x, and y:

[F(X1y ooy Xim1y Xiy Xig 1y e ooy Xn)—F (X015 ooy Xim1, ¥, Xit1s - -+, Xn)| < C.

Zo = E[f( X1, X2, ..., Xn)]-

Zi = E[f(Xy, Xo, ..., Xp)| X1, - - -, Xl

20,21, ...,Z,is a Doob martingale.

If X1, X5, ..., X, are independent random variables: there exists By
depending only on Zy, Z1, ..., Zx_1 with

By < 2y — Zk_1 < B+ c.



A General Formalization
Zo = E[f(X1, X2, ..., Xn)].
Zi = E[f(X1, Xo, ..., Xa) X0, .., Xe]-

20,21, ...,2Z,is a Doob martingale.

If X1, X, ..., Xy are independent random variables: there exists By
depending only on 2y, Z1, ..., Zk_1 with

Bk < Zk — Zk1 < By +c.

By Azuma-Hoeffding:
Pr(|Z, — Zo| > )

Pr(|f(...) — E[f(...)]| = A)
pe—2X/(Ti_ )

IN



Example: Pattern Matching

Given a string and a pattern: is the pattern interesting?
Does it appear more often than is expected in a random string?

Is the number of occurrences of the pattern concentrated around
the expectation?



S =(51,5,...,5,) string of characters, each chosen
independently and uniformly at random from o, with s = |o]|.

pattern: B = (by,..., by) fixed string, b; € o.
F= number occurrences of B in random string S.

E[F] =7



S =1(51,5,...,5,) string of characters, each chosen
independently and uniformly at random from %, with m = |X|.

pattern: B = (by, ..., by) fixed string, b; € ¥.
F= number occurrences of B in random string S.

E[F] = (n— k+1) (;)k

Can we bound the deviation of F from its expectation?



F= number occurrences of B in random string S.
Zy = E[F]

Zi = E[F|S1,...,Si], fori=1,...,n.

20,21, ...,Z,is a Doob martingale.

Z,=F.



F= number occurrences of B in random string S.

Zy = E[F]

Zi = E[F|S1,...,Si], fori=1,...,n.

20,21, ...,Z,is a Doob martingale.

Z,=F.

Each character in S can participate in no more than k occurrences

of B:
|Zi — Zit1| < k.

Azuma-Hoeffding inequality (version 1):

Pr(|F — E[F]| > A) < 2¢™X"/(n%),



Slightly better bound:

F=f(5,5,...,Sn).

Each character in S can participate in no more than k occurrences
of B: for all i, for all s1,...,s, and y

‘f(Sl./ ey Si—15Si,Si+1y - - ../Sn) - f(Sl, ey Si—1,Y,Si+1, - - ../Sn)’ < k.

Azuma-Hoeffding inequality (general framework):

Pr(|F — E[F]| > \) < 2¢~2"/("%),

Pr(|F — E[F]| > cky/n) < 2%



