
Martingales

Definition

A sequence of random variables Z0,Z1, . . . is a martingale with
respect to the sequence X0,X1, . . . if for all n ≥ 0 the following
hold:

1 Zn is a function of X0,X1, . . . ,Xn;

2 E[|Zn|] <∞;

3 E[Zn+1|X0,X1, . . . ,Xn] = Zn;

Definition

A sequence of random variables Z0,Z1, . . . is a martingale when it
is a martingale with respect to itself, that is

1 E[|Zn|] <∞;

2 E[Zn+1|Z0,Z1, . . . ,Zn] = Zn;



Example

I play series of fair games (win with probability 1/2).

Game 1: bet $1.

Game i > 1: bet 2i if won in round i − 1; bet i otherwise.

Xi = amount won in ith game. (Xi < 0 if ith game lost).

Zi = total winnings at end of ith game.



Example

Xi = amount won in ith game. (Xi < 0 if ith game lost).

Zi = total winnings at end of ith game.

Z1,Z2, . . . is martingale with respect to X1,X2, . . .

E[Xi ] = 0.

E[Zi ] =
∑

E[Xi ] = 0 <∞.

E[Zi+1|X1,X2, . . . ,Xi ] = Zi + E[Xi+1] = Zi .



Doob Martingale

Let X0,X1, . . . ,Xn be sequence of random variables. Let Y be a
random variable with E[|Y |] <∞. In general Y is a function of
X1,X2, . . . ,Xn.

Let Zi = E[Y |X0,X1, . . . ,Xi ], i = 0, 1, . . . , n.

Z0,Z1, . . . ,Zn is martingale with respect to X0,X1, . . . ,Xn.

(Often Z0 = E[Y ].)



Proof

Fact

E[E[V |U,W ]|W ] = E[V |W ].

Zi = E[Y |X0,X1, . . . ,Xi ], i = 0, 1, . . . , n

E[Zi+1|X0,X1, . . . ,Xi ] = E[E[Y |X0,X1, . . . ,Xi+1]|X0,X1, . . . ,Xi ]

= E[Y |X0,X1, . . . ,Xi ]

= Zi .



Example: Edge Exposure Martingale

Let G random graph from Gn,p. Consider m =
(n
2

)
possible edges

in arbitrary order.

Xi =

{
1 if ith edge is present
0 otherwise

F (G ) = size maximum clique in G .

Z0 = E[F (G )]

Zi = E[F (G )|X1,X2, . . . ,Xi ], for i = 1, . . . ,m.

Z0,Z1, . . . ,Zm is a Doob martingale.

(F (G ) could be any finite-valued function on graphs.)



Back to Gambling

I play series of fair games (win with probability 1/2).

Game 1: bet $1.

Game i > 1: bet 2i if I won in round i − 1; bet i otherwise.

Xi = amount won in ith game. (Xi < 0 if ith game lost).

Zi = total winnings at end of ith game.

Assume that (before starting to play) I decide to quit after k
games: what are my expected winnings?



Lemma

If Z0,Z1, . . . ,Zn is a martingale with respect to X0,X1, . . . ,Xn,
then

E[Zn] = E[Z0].

Proof.

Since Zi defines a martingale

Zi = E[Zi+1|X0,X1, . . . ,Xi ].

Then
E[Zi ] = E[E[Zi+1|X0,X1, . . . ,Xi ]] = E[Zi+1].



Back to Gambling

I play series of fair games (win with probability 1/2).

Game 1: bet $1.

Game i > 1: bet 2i if I won in round i − 1; bet i otherwise.

Xi = amount won in ith game. (Xi < 0 if ith game lost).

Zi = total winnings at end of ith game.

Assume that (before starting to gamble) we decide to quit after k
games: what are my expected winnings?

E[Zk ] = E[Z1] = 0.



A Different Strategy

Same gambling game. What happens if I:

• play a random number of games?

• decide to stop only when I have won (or lost) $1000?



Stopping Time

Definition

A non-negative, integer random variable T is a stopping time for
the sequence Z0,Z1, . . . if the event “T = n” depends only on the
value of random variables Z0,Z1, . . . ,Zn.

Intuition: corresponds to a strategy for determining when to stop a
sequence based only on values seen so far.

In the gambling game:

• first time I win 10 games in a row: is a stopping time;

• the last time when I win: is not a stopping time.



Consider again the gambling game: let T be a stopping time.

Zi = total winnings at end of ith game.

What are my winnings at the stopping time, i.e. E[ZT ]?



Consider again the gambling game: let T be a stopping time.

Zi = total winnings at end of ith game.

What are my winnings at the stopping time, i.e. E[ZT ]?

Fair game: E[ZT ] = E[Z0] = 0?



Consider again the gambling game: let T be a stopping time.

Zi = total winnings at end of ith game.

What are my winnings at the stopping time, i.e. E[ZT ]?

Fair game: E[ZT ] = E[Z0] = 0?

“T=first time my total winnings are at least $1000” is a stopping
time, and E[ZT ] ≥ 1000...



Consider again the gambling game: let T be a stopping time.

Zi = total winnings at end of ith game.

What are my winnings at the stopping time, i.e. E[ZT ]?

Fair game: E[ZT ] = E[Z0] = 0?

“T=first time my total winnings are at least $1000” is a stopping
time, and E[ZT ] > 1000...

This is a particular stopping time: it may not be finite!



Martingale Stopping Theorem

Theorem

If Z0,Z1, . . . is a martingale with respect to X1,X2, . . . and if T is
a stopping time for X1,X2, . . . then

E[ZT ] = E[Z0]

whenever one of the following holds:

• there is a constant c such that, for all i , |Zi | ≤ c;

• T is bounded;

• E[T ] <∞, and there is a constant c such that
E[|Zi+1 − Zi ||X1, . . . ,Xi ] < c.



Example: The Gambler’s Ruin

• Consider a sequence of independent, two players, fair
gambling games.

• In each round a player wins a dollar with probability 1/2 or
loses a dollar with probability 1/2.

• Xi = amount won by player 1 on ith round.

• If player 1 has lost in round i : Xi < 0.

• Zi = total amount won by player 1 after ith rounds.

• Z0 = 0.

• Player 1 must end the game if she loses `1 dollars (Zt = −`1);
player 2 must terminate when she loses `2 dollars (Zt = `2).

• q = probability that the game ends with player 1 wining `2
dollars.



Example: The Gambler’s Ruin

• T = first time player 1 wins `2 dollars or loses `1 dollars.

• T is a stopping time for X1,X2, . . . .

• Z0,Z1, . . . is a martingale.

• Zi ’s are bounded.

• Martingale Stopping Theorem: E[ZT ] = E[Z0] = 0.

E[ZT ] = q`2 − (1− q)`1 = 0

q =
`1

`1 + `2



Example: A Ballot Theorem

• Candidate A and candidate B run for an election.

• Candidate A gets a votes.

• Candidate B gets b votes.

• a > b.

• Votes are counted in random order: chosen from all
permutations on n = a + b votes.

• What is the probability that A is always ahead in the count?



Example: A Ballot Theorem

• Sk = number of votes A is leading by after k votes counted (if
A is trailing: Sk < 0).

• Sn = a− b.

• For 0 ≤ k ≤ n − 1: Xk =
Sn−k

n−k .

• Consider X0,X1, . . . ,Xn. It relates to the counting process in
backwards order.

E[Xk |X0,X1, . . . ,Xk−1] =?



Example: A Ballot Theorem

E[Xk |X0,X1, . . . ,Xk−1] =?

• Conditioning on X0,X1, . . . ,Xk−1: equivalent to conditioning
on Sn, Sn−1, . . . ,Sn−k+1, equivalent on conditioning on values
of count when counting k − 1 last votes.

• ak = number of votes for A after first k votes are counted.

• bk = number of votes for B after first k votes are counted.

Conditioning on Sn−k+1:

an−k+1 =
an−k+1 + bn−k+1 + an−k+1 − bn−k+1

2
=

n − k + 1 + Sn−k+1

2

bn−k+1 =
an−k+1 + bn−k+1 − (an−k+1 − bn−k+1)

2
=

n − k + 1− Sn−k+1

2



Example: A Ballot Theorem

• n − k + 1th vote: random vote among these first n − k + 1
votes.

Sn−k =

{
Sn−k+1 + 1 if n − k + 1th vote is for B
Sn−k+1 − 1 if n − k + 1th vote is for A

E[Sn−k |Sn−k+1] = (Sn−k+1 + 1)
n − k + 1− Sn−k+1

2(n − k + 1)

+ (Sn−k+1 − 1)
n − k + 1 + Sn−k+1

2(n − k + 1)

= Sn−k+1
n − k

n − k + 1



Example: A Ballot Theorem

E[Sn−k |Sn−k+1] = Sn−k+1
n − k

n − k + 1

E[Xk |X0,X1, . . . ,Xk−1] = E

[
Sn−k

n − k

∣∣∣∣Sn, . . . ,Sn−k+1]

=
Sn−k+1

n − k + 1
= Xk−1

X0,X1, . . . ,Xn is a martingale.



Example: A Ballot Theorem

T =

{
min{k : Xk = 0} if such k exists
n − 1 otherwise

• T is a stopping time.

• T is bounded.

• Martingale Stopping Theorem:

E[XT ] = E[X0] =
E[Sn]

n
=

a− b

a + b
.

Two cases:

1 A leads throughout the count.

2 A does not lead throughout the count.



Example: A Ballot Theorem

1 A leads throughout the count.

For 0 ≤ k ≤ n − 1: Sn−k > 0, then Xk > 0.

T = n − 1.

XT = Xn−1 = S1.

A gets the first vote in the count: S1 = 1, then XT = 1.



Example: A Ballot Theorem

2 A does not lead throughout the count.

A leads at the end. If at a certain point B leads, at a certain
moment k : Sk = 0. Then Xk = 0.

T = k < n − 1.

XT = 0.



Example: A Ballot Theorem

Putting it all together:

1 A leads throughout the count: XT = 1.

2 A does not lead throughout the count: XT = 0

E[XT ] =
a− b

a + b
= 1Ṗr(Case 1) + 0Ṗr(Case 2).

That is

Pr(A leads throughout the count) =
a− b

a + b



A Different Gambling Game

Two stages:

1 roll one die; let X be the outcome;

2 roll X standard dice; your gain Z is the sum of the outcomes
of the X dice.

What is your expected gain?



Wald’s Equation

Theorem

Let X1,X2, . . . be nonnegative, independent, identically distributed
random variables with distribution X . Let T be a stopping time for
this sequence. If T and X have bounded expectation, then

E

[
T∑
i

Xi

]
= E[T ]E[X ].

Corollary of the martingale stopping theorem.



Stopping Time: Sequence of Independent r.v.

Definition

Let Z0,Z1, . . . be a sequence of independent random variables. A
nonnegative, integer-valued random variable T is a stopping time
for the sequence if the event “T = n” is independent of
Zn+1,Zn+2, . . . .



A Different Gambling Game

Two stages:

1 roll one die; let X be the outcome;

2 roll X standard dice; your gain Z is the sum of the outcomes
of the X dice.

What is your expected gain?

Yi = outcome of ith die in second stage.

E[Z ] = E

[
X∑
i=1

Yi

]
.

X is a stopping time for Y1,Y2, . . . .

By Wald’s equation:

E[Z ] = E[X ]E[Yi ] =

(
7

2

)2

.



Example

n servers: each has queue with packets to send.

Time divided in discrete slots; servers send packets to
communicate.

Communicate through shared channel:

• if exactly 1 packet sent in time slot, transmission is successful;

• if > 1 packet sent in time slot, none is successful.

At each time slot:

• if queue is not empty, the first packet in the queue with
probability 1

n .

Assume: Queues are never empty.

Expected number of time slots until each server successfully sends
at least one packet?



T = number of time slots until each server successfully sends at
least one packet.

N = number of packets successfully sent until each server has
successfully sent at least one packet.

ti = time slot ith successfully transmitted packet is sent. t0 = 0.

ri = ti − ti+1.

T =
N∑
i=1

ri .



N = number of packets successfully sent until each server has
successfully sent at least one packet.

ti = time slot ith successfully transmitted packet is sent. t0 = 0.

ri = ti − ti+1.

Easy to check that:

• N is independent of r0, r1, . . . ;

• E[N] <∞.

Then N is a stopping time for r0, r1, . . . .

E[T ] = E

[
N∑
i=1

ri

]
= E[N]E[ri ].



p = probability a packet successfully sent in a time slot

p =

(
n

1

)(
1

n

)(
1− 1

n

)n−1

≈ e−1.

ri : geometric random variable G (p).

E[ri ] = 1/p ≈ e.

N = number of packets successfully sent until each server has
successfully sent at least one packet.

Coupon collector: E[N] = nH(n) = n ln n + O(n).

E[T ] = E

[
N∑
i=1

ri

]
= E[N]E[ri ] =

nH(n)

p
≈ en ln n.



Tail Inequalities

Theorem (Azuma-Hoeffding Inequality)

Let Z0,Z1, . . . ,Zn be a martingale such that

|Zk − Zk−1| ≤ ck .

Then, for all t ≥ 0 and any λ > 0

Pr(|Zt − Z0| ≥ λ) ≤ 2e−λ
2/(2

∑t
k=1 c

2
k ).



Tail Inequalities: A More General Form

Theorem (Azuma-Hoeffding Inequality)

Let Z0,Z1, . . . ,Zn be a martingale such that

Bk ≤ Zk − Zk−1| ≤ Bk + ck

for some constants ck and for some random variables Bk that may
be functions of X0,X1, . . . ,Xk−1. Then, for all t ≥ 0 and any
λ > 0

Pr(|Zt − Z0| ≥ λ) ≤ 2e−2λ2/(
∑t

k=1 c
2
k ).



Tail Inequalities: Doob Martingales

Let X1, . . . ,Xn be sequence of random variables.

Random variable Y :

• Y is a function of X1,X2, . . . ,Xn;

• E[|Y |] <∞.

Let Zi = E[Y |X1, . . . ,Xi ], i = 0, 1, . . . , n.

Z0,Z1, . . . ,Zn is martingale with respect to X1, . . . ,Xn.

If we can use Azuma-Hoeffding inequality:

Pr(|Zn − Z0| ≥ λ) ≤ ε(λ, . . . )

that is

Pr(|Y − E[Y ]| ≥ λ) ≤ ε(λ, . . . ).



A General Formalization
f (X1,X2, . . . ,Xn) satisfies Lipschitz condition with bound c if for
any i and any set of values x1, . . . , xn and y :

|f (x1, . . . , xi−1, xi , xi+1, . . . , xn)−f (x1, . . . , xi−1, y , xi+1, . . . , xn)| ≤ c .

Z0 = E[f (X1,X2, . . . ,Xn)].

Zk = E[f (X1,X2, . . . ,Xn)|X1, . . . ,Xk ].

Z0,Z1, . . . ,Zn is a Doob martingale.

If X1,X2, . . . ,Xk are independent random variables: there exists Bk

depending only on Z0,Z1, . . . ,Zk−1 with

Bk ≤ Zk − Zk−1 ≤ Bk + c .



A General Formalization

Z0 = E[f (X1,X2, . . . ,Xn)].

Zk = E[f (X1,X2, . . . ,Xn)|X1, . . . ,Xk ].

Z0,Z1, . . . ,Zn is a Doob martingale.

If X1,X2, . . . ,Xk are independent random variables: there exists Bk

depending only on Z0,Z1, . . . ,Zk−1 with

Bk ≤ Zk − Zk−1 ≤ Bk + c .

By Azuma-Hoeffding:

Pr(|Zn − Z0| ≥ λ) = Pr(|f (. . . )− E[f (. . . )]| ≥ λ)

≤ 2e−2λ2/(
∑n

k=1 c
2
k ).



Example: Pattern Matching

Given a string and a pattern: is the pattern interesting?

Does it appear more often than is expected in a random string?

Is the number of occurrences of the pattern concentrated around
the expectation?



S = (S1,S2, . . . ,Sn) string of characters, each chosen
independently and uniformly at random from σ, with s = |σ|.

pattern: B = (b1, . . . , bk) fixed string, bi ∈ σ.

F= number occurrences of B in random string S .

E[F ] =?



S = (S1,S2, . . . ,Sn) string of characters, each chosen
independently and uniformly at random from Σ, with m = |Σ|.

pattern: B = (b1, . . . , bk) fixed string, bi ∈ Σ.

F= number occurrences of B in random string S .

E[F ] = (n − k + 1)

(
1

m

)k

.

Can we bound the deviation of F from its expectation?



F= number occurrences of B in random string S .

Z0 = E[F ]

Zi = E[F |S1, . . . ,Si ], for i = 1, . . . , n.

Z0,Z1, . . . ,Zn is a Doob martingale.

Zn = F .



F= number occurrences of B in random string S .

Z0 = E[F ]

Zi = E[F |S1, . . . ,Si ], for i = 1, . . . , n.

Z0,Z1, . . . ,Zn is a Doob martingale.

Zn = F .

Each character in S can participate in no more than k occurrences
of B:

|Zi − Zi+1| ≤ k .

Azuma-Hoeffding inequality (version 1):

Pr(|F − E[F ]| ≥ λ) ≤ 2e−λ
2/(2nk2).



Slightly better bound:

F = f (S1,S2, . . . ,Sn).

Each character in S can participate in no more than k occurrences
of B: for all i , for all s1, . . . , sn and y

|f (s1, . . . , si−1, si , si+1, . . . , sn)− f (s1, . . . , si−1, y , si+1, . . . , sn)| ≤ k .

Azuma-Hoeffding inequality (general framework):

Pr(|F − E[F ]| ≥ λ) ≤ 2e−2λ2/(nk2).

Pr(|F − E[F ]| ≥ ck
√
n) ≤ 2e−2c2 .


