
Suppose you are a content delivery network.

In a five-minute period, you get a certain number m of requests.
Each needs to be served from one of your n servers.

How to distribute requests to balance the load?

• round robin/find the server with lowest load/etc.: require
state, communication, resulting in delays.

• assign each job to a random server: how effective is this
policy?

• How many servers have no job?
• How many servers have at least k jobs?
• What is the maximum number of jobs in any server?
• ...



Balls and Bins - Occupancy Problems

Assume that m balls are placed randomly is n boxes.

• How many boxes are empty?

• How many boxes have at least k balls?

• What is the maximum number of balls in any box?

• ...



Balls and Bins - Examples

Models many situations:

• Load balancing: balls = jobs, bins = servers;

• Data storage: balls = files, bins = disks;

• Hashing: balls = data keys, bins = hash table slots;

• Coupon Collector: balls = purchased coupons; bins = coupon
types;

• ...



The Birthday Paradox

Having thirty people in the room, is it more likely or not that some
two people in the room share the same birthday?

Assume birthdays uniformly distributed in [1, . . . , 365].

Count the configurations where no two people share a birthday.
The probability that all birthdays are distinct is:(365

30

)
30!

36530
≈ 0.29. (1)

We can also calculate this probability by considering one person at
a time:(

1− 1

365

)
·
(

1− 2

365

)
·
(

1− 3

365

)
. . . ·

(
1− 29

365

)



More generally, if there are m people and n possible birthdays, the
probability that all m have different birthdays is(

1− 1

n

)
·
(

1− 2

n

)
·
(

1− 3

n

)
. . . ·

(
1− m − 1

n

)

=
m−1∏
j=1

(
1− j

n

)
.

Using 1− k
n ≈ e−k/n when k << n,

m−1∏
j=1

(
1− j

n

)
≈

m−1∏
j=1

e−j/n

= e−
∑m−1

j=1 j/n

= e−m(m−1)/2n

≈ e−m
2/2n.



We place m balls randomly into n bins, how many bins remain
empty?
The probability that a given bin is missed by all m balls is(

1− 1

n

)m

≈ e−m/n

Let Xj = 1 if the j-th bin is empty else Xj = 0.

E [Xj ] = (1− 1
n )m.

X =
∑n

j=1 Xj (number of empty bins)

E [X ] = E

[
n∑

i=1

Xi

]
=

n∑
i=1

E [Xi ] = n

(
1− 1

n

)m

≈ ne−m/n.

Pr(X = 0) =?



How many bins have r balls?
The probability that a given bin has r balls is

pr =

(
m

r

)(
1

n

)r (
1− 1

n

)m−r

=
1

r !

m(m − 1) · · · (m − r + 1)

nr

(
1− 1

n

)m−r
.

For m, n >> r , (using that (1− x) < e−x for small x)

pr ≈
e−m/n(m/n)r

r !
.



The Poisson distribution

Definition

A discrete Poisson random variable X with parameter µ (denoted
by P(µ)) is given by the following probability distribution on
j = 0, 1, 2, . . ..

Pr(X = j) =
e−µµj

j!
.

∞∑
j=0

Pr(X = j) =
∞∑
j=0

e−µµj

j!

= e−µ
∞∑
j=0

µj

j!

= 1.



Expectation

E[X ] =
∞∑
j=1

j Pr(X = j)

=
∞∑
j=1

j
e−µµj

j!

= µ
∞∑
j=1

e−µµj−1

(j − 1)!

= µ

∞∑
j=0

e−µµj

j!

= µ.



Lemma

The sum of a finite number of independent Poisson random
variables is a Poisson random variable.



Proof.

Consider two independent Poisson random variables X and Y with
means µ1 and µ2. Now

Pr(X + Y = j) =

j∑
k=0

Pr((X = k) ∩ (Y = j − k))

=

j∑
k=0

e−µ1µk1
k!

e−µ2µ
(j−k)
2

(j − k)!

=
e−(µ1+µ2)

j!

j∑
k=0

j!

k!(j − k)!
µk1µ

(j−k)
2

=
e−(µ1+µ2)

j!

j∑
k=0

(
j

k

)
µk1µ

(j−k)
2

=
e−(µ1+µ2)(µ1 + µ2)j

j!
.



Another Proof

E [etX ] =
∞∑
k=0

e−µµk

k!
etk

= eµ(e
t−1)

∞∑
k=0

e−µe
t

(µet)k

k!
= eµ(e

t−1).

MX+Y (t) = MX (t) ·MY (t) = eµ1(e
t−1) · eµ2(et−1)

= e(µ1+µ2)(e
t−1)

which is the moment generating function of a Poisson distribution
with expectation µ1 + µ2.



Chernoff bound

Theorem

Let X be a Poisson random variable with parameter µ.

1 If x > µ, then Pr(X ≥ x) ≤ e−µ(eµ)x

xx ;

2 If x < µ, then Pr(X ≤ x) ≤ e−µ(eµ)x

xx .



Proof.

For any t > 0 and x > µ,

Pr(X ≥ x) = Pr(etX ≥ etx) ≤ E [etX ]

etx
.

Hence

Pr(X ≥ x) ≤ eµ(e
t−1)−tx .

Choosing t = ln(x/µ) > 0 gives

Pr(X ≥ x) ≤ ex−µ−x ln(x/µ)

=
e−µ(eµ)x

xx
.



Proof.

For any t < 0 and x < µ,

Pr(X ≤ x) = Pr(etX ≥ etx) ≤ E [etX ]

etx
.

Hence

Pr(X ≤ x) ≤ eµ(e
t−1)−xt .

Choosing t = ln(x/µ) < 0, gives

Pr(X ≤ x) ≤ ex−µ−x ln(x/µ)

=
e−µ(eµ)x

xx
.



Limit of Binomial Distribution

Theorem

Let Xn be a binomial random variable with parameters n and p,
where p is a function of n and limn→∞ np = λ is a constant
independent of n. Then for any fixed k,

lim
n→∞

Pr(Xn = k) =
e−λλk

k!
.

“Law of Rare Events”



“Law of Rare Events”

Some events which empirically have a Poisson distribution
(according to sources on the Internet):

• Typos per page in printed books.

• Number of bomb hits per .25km2 in South London during
World War II.

• The number of soldiers killed by horse-kicks each year in each
corps in the Prussian cavalry in the (late) 19th century.

• The number of goals in sports involving two competing teams.

• The number of yeast cells used when brewing Guinness beer.



Maximum per bin

Lemma

When n balls are thrown independently and uniformly at random
into n bins, the probability that the maximum load is more than
3 ln n/ ln ln n is at most 1/n for n sufficiently large.

The probability that bin 1 receives at least M balls is at most

(
n

M

)(
1

n

)M

≤ 1

M!
≤
( e

M

)M
.

We use:

kk

k!
<
∞∑
i=0

k i

i !
= ek ⇒ k! >

(
k

e

)k

.



The probability that any bin receives at least M ≥ 3 ln n/ ln ln n
balls is bounded above by

n
( e

M

)M
≤ n

(
e ln ln n

3 ln n

)3 ln n/ ln ln n

≤ n

(
ln ln n

ln n

)3 ln n/ ln ln n

= eln n
(
eln ln ln n−ln ln n

) 3 ln n
ln ln n

= e−2 ln n+
3(ln n)(ln ln ln n)

ln ln n

≤ 1

n
(when n is large enough)



Example: Number of Empty Bins

Theorem

Assume that m balls are placed randomly in n boxes. Assume that
m, n→∞, such that the quantity λ = ne−m/n is bounded. Let
Pr (n,m) be the probability that exactly r boxes are empty. For
each fixed r ,

lim
n,m→∞

Pr (n,m) = e−λ
λr

r !
.

X has a Poisson distribution with parameter λ:

Pr(X = i) = e−λ
λi

i !
.



Inclusion-Exclusion

Let E1, ...,En be arbitrary events:

Pr(∪ni=1Ei ) =
n∑

i=1

Pr(Ei )−
∑
i<j

Pr(Ei ∩ Ej)

+
∑

i<j<k

Pr(Ei ∩ Ej ∩ Ek)

− · · ·+ (−1)`+1
∑

i1<i2<···<i`

Pr(∩`r=1Er ) + · · ·



Proof of the Theorem

We first compute P0(m, n).
Let E1 be the event “box i is empty”.

1− P0(m, n) = Pr(∪ni=1Ei )

Pr(Ei ) =

(
1− 1

n

)m

Pr(∩ki=1Ei ) =

(
1− k

n

)m

∑
i1<i2<···<ik

Pr(∩kj=1Eij ) =

(
n

k

)(
1− k

n

)m



Lemma

For any fixed k > 0,

lim
n,m→∞

(
n

k

)(
1− k

n

)m

=
λk

k!

Proof.

nk

k!

(
1− k

n

)k

≤
(

n

k

)
≤ nk

k!

e−km/n
(

1− k2

n2

)
≤
(

1− k

n

)m

≤ e−km/n



P0(m, n) = 1− λ+
λ2

2
− λ3

3!
+ .....

P0(m, n) =
n∑

i=0

(−1)i
λi

i !

P0(m, n)→ e−λ

Pr (m, n) =

(
n

r

)(
1− r

n

)m
P0(m, n − r)

Pr (m, n)→ λr

r !
e−λ


