Application: Set Membership

We have aset S C D, s = |S| << |D|. We need a small data
structure and fast algorithm for testing “y € S7” queries.

We use hash function h: D — {0,...,m—1}:
o for each x € D: Pr(h(x) =) = 2

™

e values of f(x) for each x are independent.

We store the collection of fingerprints F(S, h) = {h(x) | x € S} in
a sorted order. To check if y € S we run binary search for h(y) in
F(S,h).

e space: slog m bits (log m bits per element of S).

e time: O(logs).

Application: Set Membership

We store the collection of fingerprints F(S, h) = {h(x) | x € S} in
a sorted order. To check if y € S we run binary search for h(y) in
F(S, h).

e space: b = slog m bits (log m bits per element of S).

e time: O(logs).

Problem False positives: y ¢ S, but h(y) = h(x) for some x € S.

S

L
= b7+ Therefore we must use

Probability of false positive <
b > slogs bits.

If we use b = 2slog s bits (that is, 2log s bits per element of S)
then probability of false positive < L

s 1
— 22slogs/s ~ s°

Bloom Filter

Choose k hash functions h; : D — {0,...,b—1}.
Let A[0, b — 1] be a binary array of b entries.
For each x € S set the k bits A[h1(x)],..., Alhx(x)] to 1.

To test y € S, output YES if and only if all bits
Alhi(y)], .., Alhk(y)] are set to 1.

Bloom Filter

S={xyz}; k=3

{x, 3z}

[oftfoftft[t[ofofofofoft[oft[ofo[1[0O]

Bloom Filter: False Positive

The probability that A[/] = 0 is (1 — 1)* ~ e=sk/b
Set k = gln% then Pr(A[i] = 1) ~ 3.

Let X be the number of bits set to 1. With high probability X < g.

(Gl

In3
2 Therefore we need

Probability of false positive < (%)k < (3)
b > s bits.

Taking b = cs for a small constant (say 20) we can obtain a false
positive probabiklity of less than 0.01.

Thus Bloom filters allow us to use much fewer bits per word than
fingerprinting (of course at the price of using several (but a

constant number!! of) hash functions)

Symmetry breaking

Typical problem in distributed computing: n users want to use a
resource and only one can use it at any given time.

How can we decide a permutation of the users quickly and fairly?
Idea: hash each users id into 2° bits and then take the
permutation given by the sorted order of the resulting numbers
Problem: we need to avoid that two user ids hash to the same
value.

Symmetry breaking

Look at the situation from a fixed user i :
The probability that one of the n — 1 other users obtain the same
hash value as i is

1., n—1
1—(1*ﬁ)n1§7 (1)

So by the union bound, the probability that any two users get the
same hash value is at most %
Hence choosing b = 3log, n guarantees succes with probability at

1
least 1 — =

Random Graphs

Many important computation problems are defined on graphs.

Many of these problems are NP-Complete but are solved
“efficiently” in practice.

A probabilistic model of graphs for probabilistic analysis of graph
algorithms.

Random Graph Process

Consider the following stochastic process:

e Start with n vertices, no edges.
e In each step add one edge between a randomly chosen pair of
vertices.
If we stop the process after NV steps (i.e. after adding N random
edges):
@ Is the graph connected?
® Does the graph have a large connected component?

© Are there isolated vertices?

A graph property is monotone if for any two graphs G = (V/, E)
and G’ = (V,E’), such that E C E’, if G has the property also G’
has that property.

Monotone properties:
® No isolated vertices;
® Connectivity;
© Perfect Matching;
® Hamiltonian Path;
0 ..

The G,y model:
e The set of all graphs on n vertices with exactly /V edges.
e All graphs in this set have equal probability.
e Thereare T = ((/%/)) graphs on n vertices with exactly N
edges.

e The probabilistic space G, y has T simple events, each with
probability +.

® What is the probability that a graph in G, y has isolated
vertices?

® What is the probability that a graph in G, y is connected?

©® What is the probability that a graph in G,y has a
Hamiltonian cycle?

O How fast can an algorithm find a Hamiltonian cycle in
G e Gyn?

Isolated Vertices

Theorem
Let N = 3(nlogn+ cn), and let P,(n, N) be the probability that

—C

G € Gy has isolated vertices, then lim,_,o P,(n,N) =1—e"¢

Proof.

View the two endpoints of an edge as two balls placed uniformly at
random into n boxes (nodes of the graph).
The number of isolated nodes is the number of empty boxes.

1\ 2N
E[number of empty boxes| = n (1 —) < ne~(lognte) — g=¢,
n

The number of empty boxes is distributed Poisson with A = e~ €.

Probability of 0 empty boxes = e * = e~ ¢ *

Isolated Vertices Il

Theorem

Let N = 3(nlogn+ cn), and let P,(n, N) be the probability that
G € G,y has isolated vertices, then P,(n,N) < e™°.

Proof.

" Coupon collector” argument:

1 2N
P,(n,N) <n (1 —) <e €

Connectivity

Theorem

Let N = Snlogn+ w(n)n, and let Pc(n, N) the probability that
G € Gy n is connected. As n — oo:

0 ifw(n) = —o0
Pe(n, N) = { 1 ifw(n) — o0

The G, , model:

The set of all graphs on n vertices.
The probability of a graph with M edges is p(1 — p)(g)_M
Let G € G, . Given that G has M edges it has the same
distribution as G € G, .
For N = (5)p

e G, n and G, , have similar monotone properties.

e Let G, , with p > 1/n, and M edges. There is ¢ > 0, such that

Pr(M € [N — cVN,N+ cVN] >1—1/n

If a property holds with probability < R in G, , it hold with
probability < cv/MR in G, .

Isolated Vertices Il

Let p = "7 and let P,(n, p) be the probability that G € G, ,

=@

has isolated vertices, then lim,_,, P,(n,p) =1—e ¢
Theorem

Let p = "7 and let P,(n, p) be the probability that G € G, ,
has isolated vertices, then P,(n,p) < e €.

Algorithm for Finding a Hamiltonian Path

A simple path is a path with no loops, i.e. a vertex is visited no
more than once.

A Hamiltonian Path is a simple path that visits every vertex of
the graph.

A Hamiltonian Cycle is a cycle that visits every vertex in the
graph exactly once.

Given a graph G, deciding if G has a Hamiltonian path/cycle is
NP-Complete.

Theorem

Let G be a graph chosen randomly from G, , for p > &ng” with
some constant ¢ > 0. There is an O(nlog n) algorithm that finds,
with high probability, a Hamiltonian path (cycle) in G.

Rotation

Let G be an undirected graph. Assume that
P=wvi,vo, ., v
is a simple path in G and (v, v;) is an edge of G then
P = V1, .oy Viy Vie, V1 ooy Vi, Vg1

is a simple path is G.

Algorithm

Assume that each vertex has its list of adjacent edges, in a random
order.

@ Choose an arbitrary vertex xp to start the path. HEAD = xp.
® Repeat until all vertices are connected
@ Let (HEAD, u) be the first edge in HEAD's list.
® Remove (HEAD, u) from HEAD's and u's lists.
© If u not in the path HEAD := u, else use the edge to "rotate"
the path.

“Almost” a coupon collector paradigm.
Can we modify the algorithm so that at each step the HEAD is
chosen uniformly and independently from all the nodes?

Modified Algorithms

Consider a “less efficient” algorithm that for each vertex u keeps
two lists:

@ unused_edges(u) - adjacent edges that were not used yet;
@® used_edges(u) - edges that were already used.
When u is at the head of the path we choose

e a random element in used edges(u), with probability
|used_edges(u)| .
e

e the tail of the path becomes the head of the path, with
probability %;
e the head of unused edges(u) list (and move it to

used _edges(u)), otherwise (with probability
1-1_ \used,edges(u)|)

n n

The probability that a given vertex becomes HEAD at a given
iteration of the modified algorithm is %

Proof.

Clear for the tail of the paths and for neighbors of the current head
in old edges.
The probability of using the unused_edge(u) list is

1 1 |used_edges(u)|
n n

and that edge is connected to a vertex chosen uniformly at random
from a set of
n— 1 — |used_edge(u)|

vertices. L]

Are choices in successive steps independent?

Independent unused-edge lists

Let g € [0, 1] such that p = 2q — ¢°.

(Initialization) For any edge (u, v) do exactly one of the following:
® With probability g(1 — q)/(29 — ¢°), place the edge on u's
unused edge-list, but not v's;
@® With probability g(1 — q)/(2g — g°), place the edge on v's
unused edge-list, but not u's;
©® With probability g°/(2g — g°), the edge is placed on both
unused-edge lists.

For edge (x,y), the probability that it is initially placed in the
unused-edge list for x is

q(1—q) 2 -
p<2qq2 +2qfq2 -7

The probability that it is placed in both x's and y's lists is:

pq? >

=q°,
2q — q?

so events are independent.

Modified Hamiltonian Cycle Algorithm:

@ Start with a random vertex as the head of the path.
® Repeat until the rotation edge closes a Hamiltonian cycle or
the unused-edges list of the head of the path is empty:

@ Let the current path be P = vy, v, ..., vk, with v, being the
head.
@ Execute i, ii or iii below with probabilities 1, 1USed-edges(w)]

n’ n !
and 1 — % — w, respectively:
@ Reverse the path, and make v; the head.

@® Choose uniformly at random an edge from used-edges(vx); if
the edge is (vk, vi), rotate the current path with (v«, v;) and
set vj;1 to be the head. (If the edge is (vk, vk—1), then no
change is made.)

© Select the first edge from unused-edges(vx), call it (v, u). If
u+#vjforl <i<k,add u= vk to the end of the path and
make it the head. Otherwise, if u = v;, rotate the current path
with (vk, vj), and set vi;1 to be the head. (This step closes the
Hamiltonian path if kK = n and the chosen edge is (v,, v1).)

© Update the used-edges and unused-edges lists appropriately.

© Return a Hamiltonian cycle if one was found or failure if no
cycle was found.

Theorem

Suppose the input to the modified Hamiltonian cycle algorithm
initially has unused edge-lists where each edge (v, u) with u # v is
placed on v's list independently with probability q > 20'%. Then
the algorithm successfully finds a Hamiltonian cycle in O(nln n)
iterations of the repeat loop (step 2) with probability 1 — O(n™1).

Note that we did not assume that the input random graph has a
Hamiltonian cycle.

&1: The algorithm run 3nln n iterations with no unused-edges list
becoming empty, but failed to construct a Hamiltonian cycle.

Ex: At least one unused-edges list became empty during the first
3nln n iterations of the loop.

We first bound Pr(&1).

The probability that any vertex was not chosen in 2nln n iterations
is at most

2nlnn
n<1—1> Sne*m””:l.
n n

The probability that the path does not become a cycle within the
next nln n iterations is

1 ninn N 1
1—— <e "=,
n n

Pr(&1) <

SN

Pr(&>) = the probability that an unused-edges list is empty in the
first 3nln n iterations.

Er,: At least 91n n edges were removed from the unused-edges list
of at least one vertex in the first 3nIn n iterations of the loop.
Erp: At least one vertex has fewer than 10In n edges.

PF(EQ) < Pr(Ega) + Pr(Ezb).

We bound Pr(&,).

Let XJ’ be a Bernoulli random variable that is 1 if the /-th vertex is
adjacent to the edge used in the j-th iteration of the loop and 0
otherwise.

X/ Zj)ﬂ![nnX/

E[X/] = 1 and E[X'] < 3Inn.

IN

3inn
; e
Pr(X' > 9l <| = .
r(X' > nn)_<27> .

Pr(&2,) < 1/n.

Esp: At least one vertex has 101n n or fewer edges initially in its
unused-edges list.

Y'" = number of edges initially in vertex / unused-edges list.
E[Y'] = (n—1)g > 20(n—1)Inn/n > 191n n for sufficiently large
n.

Pr(Y' < 10Inn) < e 1M n(9/19)%/2 1

n2

1
Pr(€2b) < ;,

1 1 2
Pr(EQ)S -4+ - = -
n n n

Pr(El) -+ Pr(é'g) <

+

2
n

SN

4
o

Corollary

By putting edges on the unused-edges lists appropriately, the
algorithm finds a Hamiltonian cycle on a graph chosen randomly
from G, , with probability 1 — O(1/n) whenever p > 40Inn/n.

We need g € [0, 1] such that p = 2g — g2, and g > 20Inn/n.
If p>40Inn/nthen g > p/2 >20Inn/n.

