
Application: Set Membership

We have a set S ⊂ D, s = |S | << |D|. We need a small data
structure and fast algorithm for testing “y ∈ S?′′ queries.

We use hash function h : D → {0, . . . ,m − 1}:

• for each x ∈ D: Pr(h(x) = j) = 1
m ;

• values of f (x) for each x are independent.

We store the collection of fingerprints F (S , h) = {h(x) | x ∈ S} in
a sorted order. To check if y ∈ S we run binary search for h(y) in
F (S , h).

• space: s log m bits (log m bits per element of S).

• time: O(log s).



Application: Set Membership

We store the collection of fingerprints F (S , h) = {h(x) | x ∈ S} in
a sorted order. To check if y ∈ S we run binary search for h(y) in
F (S , h).

• space: b = s log m bits (log m bits per element of S).

• time: O(log s).

Problem False positives: y 6∈ S , but h(y) = h(x) for some x ∈ S .

Probability of false positive ≤ s
m = s

2b/s
. Therefore we must use

b ≥ s log s bits.
If we use b = 2s log s bits (that is, 2 log s bits per element of S)
then probability of false positive ≤ s

22s log s/s = 1
s .



Bloom Filter

Choose k hash functions hi : D → {0, . . . , b − 1}.

Let A[0, b − 1] be a binary array of b entries.

For each x ∈ S set the k bits A[h1(x)], . . . ,A[hk(x)] to 1.

To test y ∈ S , output YES if and only if all bits
A[h1(y)], . . . ,A[hk(y)] are set to 1.



Bloom Filter

S = {x,y,z}; k = 3



Bloom Filter: False Positive

The probability that A[i ] = 0 is
(
1− 1

b

)sk ≈ e−sk/b

Set k = b
s ln 3

2 then Pr(A[i ] = 1) ≈ 1
3 .

Let X be the number of bits set to 1. With high probability X ≤ b
2 .

Probability of false positive ≤
(
1
2

)k ≤ (12) b
s
ln 3

2 . Therefore we need
b ≥ s bits.
Taking b = cs for a small constant (say 20) we can obtain a false
positive probabiklity of less than 0.01.
Thus Bloom filters allow us to use much fewer bits per word than
fingerprinting (of course at the price of using several (but a
constant number!! of) hash functions)



Symmetry breaking

Typical problem in distributed computing: n users want to use a
resource and only one can use it at any given time.
How can we decide a permutation of the users quickly and fairly?
Idea: hash each users id into 2b bits and then take the
permutation given by the sorted order of the resulting numbers
Problem: we need to avoid that two user ids hash to the same
value.



Symmetry breaking

Look at the situation from a fixed user i :
The probability that one of the n − 1 other users obtain the same
hash value as i is

1− (1− 1

2b
)n−1 ≤ n − 1

2b
(1)

So by the union bound, the probability that any two users get the
same hash value is at most n(n−1)

2b
.

Hence choosing b = 3 log2 n guarantees succes with probability at
least 1− 1

n .



Random Graphs

Many important computation problems are defined on graphs.

Many of these problems are NP-Complete but are solved
“efficiently” in practice.

A probabilistic model of graphs for probabilistic analysis of graph
algorithms.



Random Graph Process

Consider the following stochastic process:

• Start with n vertices, no edges.

• In each step add one edge between a randomly chosen pair of
vertices.

If we stop the process after N steps (i.e. after adding N random
edges):

1 Is the graph connected?

2 Does the graph have a large connected component?

3 Are there isolated vertices?



A graph property is monotone if for any two graphs G = (V ,E )
and G ′ = (V ,E ′), such that E ⊆ E ′, if G has the property also G ′

has that property.

Monotone properties:

1 No isolated vertices;

2 Connectivity;

3 Perfect Matching;

4 Hamiltonian Path;

5 ....



The Gn,N model:

• The set of all graphs on n vertices with exactly N edges.

• All graphs in this set have equal probability.

• There are T =
((n2)
N

)
graphs on n vertices with exactly N

edges.

• The probabilistic space Gn,N has T simple events, each with
probability 1

T .



1 What is the probability that a graph in Gn,N has isolated
vertices?

2 What is the probability that a graph in Gn,N is connected?

3 What is the probability that a graph in Gn,N has a
Hamiltonian cycle?

4 How fast can an algorithm find a Hamiltonian cycle in
G ∈ Gn,N?



Isolated Vertices

Theorem

Let N = 1
2(n log n + cn), and let Pv (n,N) be the probability that

G ∈ Gn,N has isolated vertices, then limn→∞ Pv (n,N) = 1− e−e
−c

.

Proof.

View the two endpoints of an edge as two balls placed uniformly at
random into n boxes (nodes of the graph).
The number of isolated nodes is the number of empty boxes.

E [number of empty boxes] = n

(
1− 1

n

)2N

≤ ne−(log n+c) = e−c .

The number of empty boxes is distributed Poisson with λ = e−c .
Probability of 0 empty boxes = e−λ = e−e

−c



Isolated Vertices II

Theorem

Let N = 1
2(n log n + cn), and let Pv (n,N) be the probability that

G ∈ Gn,N has isolated vertices, then Pv (n,N) ≤ e−c .

Proof.

”Coupon collector” argument:

Pv (n,N) ≤ n

(
1− 1

n

)2N

≤ e−c

.



Connectivity

Theorem

Let N = 1
2n log n + w(n)n, and let Pc(n,N) the probability that

G ∈ Gn,N is connected. As n→∞:

Pc(n,N)→
{

0 if w(n)→ −∞
1 if w(n)→∞



The Gn,p model:

• The set of all graphs on n vertices.

• The probability of a graph with M edges is pM(1− p)(n2)−M

• Let G ∈ Gn,p. Given that G has M edges it has the same
distribution as G ∈ Gn,M .

• For N =
(n
2

)
p

• Gn,N and Gn,p have similar monotone properties.
• Let Gn,p with p ≥ 1/n, and M edges. There is c > 0, such that

Pr(M ∈ [N − c
√

N,N + c
√

N] ≥ 1− 1/n

If a property holds with probability ≤ R in Gn,p it hold with

probability ≤ c
√

MR in Gn,M .



Isolated Vertices III

Theorem

Let p = log n+c
n , and let Pv (n, p) be the probability that G ∈ Gn,p

has isolated vertices, then limn→∞ Pv (n, p) = 1− e−e
−c

.

Theorem

Let p = log n+c
n , and let Pv (n, p) be the probability that G ∈ Gn,p

has isolated vertices, then Pv (n, p) ≤ e−c .



Algorithm for Finding a Hamiltonian Path

A simple path is a path with no loops, i.e. a vertex is visited no
more than once.
A Hamiltonian Path is a simple path that visits every vertex of
the graph.
A Hamiltonian Cycle is a cycle that visits every vertex in the
graph exactly once.
Given a graph G , deciding if G has a Hamiltonian path/cycle is
NP-Complete.

Theorem

Let G be a graph chosen randomly from Gn,p for p ≥ c log n
n with

some constant c > 0. There is an O(n log n) algorithm that finds,
with high probability, a Hamiltonian path (cycle) in G .



Rotation

Let G be an undirected graph. Assume that

P = v1, v2, ..., vk

is a simple path in G and (vk , vi ) is an edge of G then

P ′ = v1, ...., vi , vk , vk−1, ...., vi+2, vi+1

is a simple path is G .



Algorithm

Assume that each vertex has its list of adjacent edges, in a random
order.

1 Choose an arbitrary vertex x0 to start the path. HEAD = x0.

2 Repeat until all vertices are connected

1 Let (HEAD, u) be the first edge in HEAD’s list.
2 Remove (HEAD, u) from HEAD’s and u’s lists.
3 If u not in the path HEAD := u, else use the edge to ”rotate”

the path.

“Almost” a coupon collector paradigm.
Can we modify the algorithm so that at each step the HEAD is
chosen uniformly and independently from all the nodes?



Modified Algorithms

Consider a “less efficient” algorithm that for each vertex u keeps
two lists:

1 unused edges(u) - adjacent edges that were not used yet;

2 used edges(u) - edges that were already used.

When u is at the head of the path we choose

• a random element in used edges(u), with probability
|used edges(u)|

n ;

• the tail of the path becomes the head of the path, with
probability 1

n ;

• the head of unused edges(u) list (and move it to
used edges(u)), otherwise (with probability

1− 1
n −

|used edges(u)|
n ).



Lemma

The probability that a given vertex becomes HEAD at a given
iteration of the modified algorithm is 1

n .

Proof.

Clear for the tail of the paths and for neighbors of the current head
in old edges.
The probability of using the unused edge(u) list is

1− 1

n
− |used edges(u)|

n

and that edge is connected to a vertex chosen uniformly at random
from a set of

n − 1− |used edge(u)|

vertices.

Are choices in successive steps independent?



Independent unused-edge lists

Let q ∈ [0, 1] such that p = 2q − q2.

(Initialization) For any edge (u, v) do exactly one of the following:

1 With probability q(1− q)/(2q − q2), place the edge on u’s
unused edge-list, but not v ’s;

2 With probability q(1− q)/(2q − q2), place the edge on v ’s
unused edge-list, but not u’s;

3 With probability q2/(2q − q2), the edge is placed on both
unused-edge lists.



For edge (x , y), the probability that it is initially placed in the
unused-edge list for x is

p

(
q(1− q)

2q − q2
+

q2

2q − q2

)
= q;

The probability that it is placed in both x ’s and y ’s lists is:

pq2

2q − q2
= q2,

so events are independent.



Modified Hamiltonian Cycle Algorithm:

1 Start with a random vertex as the head of the path.
2 Repeat until the rotation edge closes a Hamiltonian cycle or

the unused-edges list of the head of the path is empty:
1 Let the current path be P = v1, v2, . . . , vk , with vk being the

head.

2 Execute i, ii or iii below with probabilities 1
n , |used-edges(vk )|

n ,

and 1− 1
n −

|used-edges(vk )|
n , respectively:

1 Reverse the path, and make v1 the head.

2 Choose uniformly at random an edge from used-edges(vk); if
the edge is (vk , vi ), rotate the current path with (vk , vi ) and
set vi+1 to be the head. (If the edge is (vk , vk−1), then no
change is made.)

3 Select the first edge from unused-edges(vk), call it (vk , u). If
u 6= vi for 1 ≤ i ≤ k, add u = vk+1 to the end of the path and
make it the head. Otherwise, if u = vi , rotate the current path
with (vk , vi ), and set vi+1 to be the head. (This step closes the
Hamiltonian path if k = n and the chosen edge is (vn, v1).)

3 Update the used-edges and unused-edges lists appropriately.

3 Return a Hamiltonian cycle if one was found or failure if no
cycle was found.



Theorem

Suppose the input to the modified Hamiltonian cycle algorithm
initially has unused edge-lists where each edge (v , u) with u 6= v is
placed on v’s list independently with probability q ≥ 20 ln n

n . Then
the algorithm successfully finds a Hamiltonian cycle in O(n ln n)
iterations of the repeat loop (step 2) with probability 1− O(n−1).

Note that we did not assume that the input random graph has a
Hamiltonian cycle.



E1: The algorithm run 3n ln n iterations with no unused-edges list
becoming empty, but failed to construct a Hamiltonian cycle.
E2: At least one unused-edges list became empty during the first
3n ln n iterations of the loop.
We first bound Pr(E1).
The probability that any vertex was not chosen in 2n ln n iterations
is at most

n

(
1− 1

n

)2n ln n

≤ ne−2 ln n =
1

n
.

The probability that the path does not become a cycle within the
next n ln n iterations is(

1− 1

n

)n ln n

≤ e− ln n =
1

n
.

Pr(E1) ≤ 2

n
.



Pr(E2) = the probability that an unused-edges list is empty in the
first 3n ln n iterations.
E2a: At least 9 ln n edges were removed from the unused-edges list
of at least one vertex in the first 3n ln n iterations of the loop.
E2b: At least one vertex has fewer than 10 ln n edges.

Pr(E2) ≤ Pr(E2a) + Pr(E2b).



We bound Pr(E2a).

Let X i
j be a Bernoulli random variable that is 1 if the i-th vertex is

adjacent to the edge used in the j-th iteration of the loop and 0
otherwise.

X i =
∑3n ln n

j=1 X i
j .

E[X i
j ] = 1

n and E[X i ] ≤ 3 ln n.

Pr(X i ≥ 9 ln n) ≤
(
e2

27

)3 ln n

≤ 1

n2
.

Pr(E2a) ≤ 1/n.



E2b: At least one vertex has 10 ln n or fewer edges initially in its
unused-edges list.
Y i = number of edges initially in vertex i unused-edges list.
E[Y i ] = (n − 1)q ≥ 20(n − 1) ln n/n ≥ 19 ln n for sufficiently large
n.

Pr(Y i ≤ 10 ln n) ≤ e−19 ln n(9/19)
2/2 <

1

n2

Pr(E2b) <
1

n
,

Pr(E2) ≤ 1

n
+

1

n
=

2

n
.

Pr(E1) + Pr(E2) ≤ 2

n
+

2

n
=

4

n
.



Corollary

By putting edges on the unused-edges lists appropriately, the
algorithm finds a Hamiltonian cycle on a graph chosen randomly
from Gn,p with probability 1− O(1/n) whenever p ≥ 40 ln n/n.

We need q ∈ [0, 1] such that p = 2q − q2, and q ≥ 20 ln n/n.
If p ≥ 40 ln n/n then q ≥ p/2 ≥ 20 ln n/n.


