The Probabilistic Method

- If E[X] = C, then there are values $c_1 \le C$ and $c_2 \ge C$ such that $Pr(X = c_1) > 0$ and $Pr(X = c_2) > 0$.
- If a random object in a set satisfies some property with positive probability then there is an object in that set that satisfies that property.

Theorem

Given any graph G = (V, E) with *n* vertices and *m* edges, there is a partition of V into two disjoint sets A and B such that at least m/2 edges connect vertex in A to a vertex in B.

Proof.

Construct sets A and B by randomly assign each vertex to one of the two sets.

The probability that a given edge connect A to B is 1/2, thus the expected number of such edges is m/2.

Thus, there exists such a partition.

Maximum Satisfiability

Given m clauses in CNF (Conjunctive Normal Form), assume that no clause contains a variable and its complement.

Theorem

For any set of m clauses there is a truth assignment that satisfy at least m/2 of the clauses.

Proof.

Assign random values to the variables. The probability that a given clause (with k literals) is not satisfied is 2^{-k} , so the probability that it is satisfied is

$$1-2^{-k} \ge \frac{1}{2}$$

Monochromatic Complete Subgraphs

Given a complete graph on 1000 vertices, can you color the edges in two colors such that no clique of 20 vertices is monochromatic?

Theorem

If $n \le 2^{k/2}$ then it is possible to edge color the edges of a complete graph on n points (K_n) , such that is has no monochromatic K_k subgraph.

Proof:

Consider a random coloring.

For a given set of k vertices, the probability that the clique defined by that set is monochromatic is bounded by

 $2\times 2^{-\binom{k}{2}}.$

There are $\binom{n}{k}$ such cliques, thus the probability that **any** clique is monochromatic is bounded by

$$\binom{n}{k} 2 \times 2^{-\binom{k}{2}} \le \frac{n^{k}}{k!} 2 \times 2^{-\binom{k}{2}}$$
$$\le 2^{(k)^{2}/2 - k(k-1)/2 + 1} \frac{1}{k!} < 1.$$
$$= 2^{k/2} + 1/k! < 1$$

Thus, there is a coloring with the required property. When $n = 1000 \le 2^{10} = 2^{k/2}$ we get that there exists a 2-colouring of K_{1000} with no monochromatics K_{20} .

Sample and Modify

An *independent set* in a graph G is a set of vertices with no edges between them.

Finding the largest independent set in a graph is an NP-hard problem.

Theorem

Let G = (V, E) be a graph on n vertices with dn/2 edges. Then G has an independent set with at least n/2d vertices.

Algorithm:

- Delete each vertex of G (together with its incident edges) independently with probability 1 1/d.
- 2 For each remaining edge, remove it and one of its adjacent vertices.

X = number of vertices that survive the first step of the algorithm.

$$E[X] = \frac{n}{d}.$$

Y = number of edges that survive the first step. An edge survives if and only if its two adjacent vertices survive.

$$E[Y] = \frac{nd}{2} \left(\frac{1}{d}\right)^2 = \frac{n}{2d}.$$

The second step of the algorithm removes all the remaining edges, and at most Y vertices. Size of output independent set:

ze of output independent set:

$$E[X-Y] = \frac{n}{d} - \frac{n}{2d} = \frac{n}{2d}$$

Conditional Expectation

Definition

$$E[Y \mid Z = z] = \sum_{y} y \operatorname{Pr}(Y = y \mid Z = z),$$

where the summation is over all y in the range of Y.

Lemma

For any random variables X and Y,

$$E[X] = \sum_{y} \Pr(Y = y) E[X \mid Y = y],$$

where the sum is over all values in the range of Y.

Derandomization using Conditional Expectations

Given a graph G = (V, E) with *n* vertices and *m* edges, we showed that there is a partition of *V* into *A* and *B* such that at least m/2 edges connect *A* to *B*. How do we find such a partition? C(A, B) = number of edges connecting A to B. If A, B is a random partition $E[C(A, B)] = \frac{m}{2}$. Algorithm:

- 1 Let v_1, v_2, \ldots, v_n be an arbitrary enumeration of the vertices.
- 2 Let x_i be the set where v_i is placed $(x_i \in \{A, B\})$.
- **3** For i = 1 to n do:

Place v_i such that

 $E[C(A,B) | x_1, x_2, \dots, x_i] \\\geq E[C(A,B) | x_1, x_2, \dots, x_{i-1}] \geq m/2.$

Lemma

For all i = 1, ..., n there is an assignment of v_i such that $E[C(A, B) \mid x_1, x_2, ..., x_i]$ $\geq E[C(A, B) \mid x_1, x_2, ..., x_{i-1}] \geq m/2.$

Proof.

By induction on *i*. For i = 1, $E[C(A, B) | x_1] = E[C(A, B)] = m/2$ For i > 1, if we place v_i randomly in one of the two sets,

$$E[C(A, B) | x_1, x_2, \dots, x_{i-1}]$$

$$= \frac{1}{2}E[C(A, B) | x_1, x_2, \dots, x_i = A]$$

$$+ \frac{1}{2}E[C(A, B) | x_1, x_2, \dots, x_i = B].$$

 $\max(E[C(A, B) | x_1, x_2, ..., x_i = A], E[C(A, B) | x_1, x_2, ..., x_i = B])$ $\geq E[C(A, B) | x_1, x_2, ..., x_{i-1}]$ $\geq m/2$ How do we compute

 $\max(E[C(A, B) | x_1, x_2, \dots, x_i = A], \\ E[C(A, B) | x_1, x_2, \dots, x_i = B]) \\ \geq E[C(A, B) | x_1, x_2, \dots, x_{i-1}]$

We just need to consider edges between v_i and v_1, \ldots, v_{i-1} . Simple Algorithm:

1 Place v_1 arbitrarily.

2 For i = 2 to n do

1 Place v_i in the set with smaller number of neighbors.

Dense graphs with no short cycles

Theorem

For every integer $k \ge 3$ there exists a graph G with n vertices, at least $\frac{1}{4}n^{1+\frac{1}{k}}$ edges and no cycle of length less than k.

Proof: Consider a random graph $G \in \mathcal{G}_{n,p}$ with $p = n^{\frac{1}{k}-1}$ and let the random variable X denote the number of edges in the graph. Then

$$\Xi[X] = p\binom{n}{2}$$
$$= n^{\frac{1}{k}-1}\frac{1}{2}n(n-1)$$
$$= \frac{1}{2}\left(1-\frac{1}{n}\right)n^{\frac{1}{k}+1}$$

Dense graphs with no short cycles

Let Y be the random variable whose value (for the given graph G) is number of cycles of length at most k - 1 in G. Each *i*-cycle occurs with probability p^i and there are $\binom{n}{i} \frac{(i-1)!}{2}$ possible cycles of length *i*. Thus

$$\mathbf{E}[Y] = \sum_{i=1}^{k-1} \binom{n}{i} \frac{(i-1)!}{2} p^{i} \leq \sum_{i=1}^{k-1} n^{i} p^{i}$$
$$= \sum_{i=1}^{k-1} n^{\frac{i}{k}}$$
$$\leq k n^{\frac{k-1}{k}}$$

Dense graphs with no short cycles

Hence

$$\mathbf{E}[X - Y] \geq \frac{1}{2} \left(1 - \frac{1}{n}\right) n^{\frac{1}{k} + 1} - k n^{\frac{k-1}{k}}$$

$$\geq \frac{1}{4} n^{\frac{1}{k} + 1}$$

So, if we delete one edge from every cycle of length at most k-1 in G the expected number of edges in the resulting graph G' is at least $\frac{1}{4}n^{\frac{1}{k}+1}$. This means that there exists a graph that has at least $\frac{1}{4}n^{\frac{1}{k}+1}$ and no cycles with less than k vertices.

The **Chromatic** number, $\chi(G)$ of a graph G = (V, E) is the minimum integer k so that we can partition V into disjoint sets V_1, V_2, \ldots, V_k with the property that no edge is inside any V_i .

Theorem

For every $k \ge 1$ there exists a graph with no clique of size 3 (triangle-free) and chromatic number at least k.

Proof Let $G \in \mathcal{G}_{n,p}$ where $p = n^{-\frac{2}{3}}$

To prove that $\chi(G) > k$ it suffices to show that G has no independent set of size $\lceil \frac{n}{k} \rceil$. In fact we prove that with high probability G no has independent set of suze $\lceil \frac{n}{2k} \rceil$. Let the random variable I count the number of independent sets of size $\lceil \frac{n}{2k} \rceil$ in G. Let S be the set of all $S \subseteq V$ of size $\lceil \frac{n}{2k} \rceil$. Let the indicator variable I_S be one if S is an independent set and 0 otherwise. So $I = \sum_{\{S \in S\}} I_S$.

Then we have $E[I_s] = (1-p)^{\binom{\lceil n \\ 2}{2}}$

$$\mathbf{E}[I] = \sum_{\{S \in S\}} \mathbf{E}[I_s]$$
$$= {\binom{n}{\lceil \frac{n}{2k} \rceil}} (1-p)^{\binom{\lceil \frac{n}{2k} \rceil}{2}}$$
$$< {\binom{n}{\lceil \frac{n}{2k} \rceil}} (1-p)^{\binom{\frac{n}{2k}}{2}}$$

Using that $\binom{n}{r} \leq 2^n$ for all $0 \leq r \leq n$ and $1 - x < e^{-x}$ when x > 0, we get

$$\mathbf{E}[I] < 2^{n} e^{-\frac{pn(n-2k)}{8k^{2}}} \\ < 2^{n} e^{-\frac{n^{\frac{4}{3}}}{16k^{2}}} \\ < \frac{1}{2},$$

when $n > 2^{12} k^6$.

When $n \ge 2^{12}k^6$ we have $E[I] < \frac{1}{2}$. By Markov's inequality $Pr(I > 0) < \frac{1}{2}$ when $n \ge 2^{12}k^6$. Let *T* be the number of triangles in *G*. Now we need to show that E[T] is also much less than one, BUT that is not true!

$$\mathbf{E}[T] = \binom{n}{3} p^3 < \frac{n^3}{3!} (n^{-\frac{2}{3}})^3 = \frac{n}{6}$$
(1)

We found that $E[T] = \frac{n}{6}$. By Markov's inequality, $Pr(T \ge \frac{n}{2}) \le \frac{\frac{n}{6}}{\frac{n}{2}} = \frac{1}{3}$ for large nNow we have $Pr(I \ge 1) + Pr(T \ge \frac{n}{2}) < \frac{1}{2} + \frac{1}{3} < 1$ so there exists a graph G with I = 0 and $T \le \frac{n}{2}$.

Choose a set *M* of at most $\frac{n}{2}$ vertices which meets all triangles in *g* and let G' = G - M. Then *G'* is triangle-free and has at least $\frac{n}{2}$ vertices. Also *G'* has no independent set of size $\lceil \frac{n}{2k} \rceil$ (because *G* has no such set) so $\chi(G') > \frac{\frac{n}{2}}{\frac{2k}{2k}} = k$.

Randomization as a Resource

Complexity is usually studied in terms of resources, TIME and SPACE.

We add a new resource, RANDOMNESS, measured by the number of independent random bits used by the algorithm (= the entropy of the random source).

Example: Packet Routing

We proved:

Theorem

There is an algorithm for permutation routing on an $N = 2^n$ -cube that uses a total of O(nN) random bits and terminates with high probability in *cn* steps, for some constant *c*.

Can we achieve the same result with fewer random bits?

Theorem

There is an algorithm for permutation routing on an $N = 2^n$ -cube that uses a total of O(n) random bits and terminates with high probability in *cn* steps, for some constant *c*.

Proof

Let A(X) be a randomized algorithm with input x that uses (up to) s random bits. Let A(x, r) be the execution of algorithm A with input x and a fixed sequence r on s bits. We can write A(X) as

1 Choose r uniformly at random in $[0, 2^s - 1]$.

2 Run A(X, r).

In the two phase routing algorithm $s = \log(N^N) = nN$ (it chooses a random destination independently for each packet). Let $\mathcal{B} = \{B_1, \dots, B_r\}$ be the a collection of 2^s deterministic algorithms A(I, r). We proved:

Lemma

For a given input permutation π and a deterministic algorithm B_i chosen uniformly at random from \mathcal{B} , the probability that B_i fails to route π in cn steps is bounded by 1/N.

Choose a random set $\mathcal{D} = \{D_1, \dots, D_{N^3}\}$ of N^3 elements in \mathcal{B} . Let $X_i^{\pi} = 1$ if algorithm D_i does NOT route permutation π in *cn* steps, else $X_i^{\pi} = 0$

$$E[\sum_{i=1}^{N^3} X_i^{\pi}] \le N^2$$

$$Prob(\sum_{i=1}^{N^3} X_i^{\pi} \ge 2N^2) \le e^{-N^2/3}$$

$$Prob(\exists \pi \ \sum_{i=1}^{N^3} X_i^{\pi} \geq 2N^2) \leq N! e^{-N^2/3} < 1$$

$$Prob(\exists \pi, \quad \sum_{i=1}^{N^3} X_i^{\pi} \geq 2N^2) \leq N! e^{-N^2/3} < 1$$

Theorem

There exists a set \mathcal{D} of N^3 deterministic algorithms, such that for any given permutation π and an algorithm D chosen uniformly at random from \mathcal{D} , algorithm D routes π in *cn* steps with probability 1 - 1/N. The random choice requires O(n) random bits.

Can we do better?

Do we need any random bits?

Definition

A routing algorithm is **oblivious** if the path taken by one packet is independent of the source and destinations of any other packets in the system.

Theorem

Given an N-node network with maximum degree d the routing time of any deterministic oblivious routing scheme is

 $\Omega(\sqrt{\frac{N}{d^3}}).$

Theorem

For any deterministic oblivious algorithm for permutation routing on the $N = 2^n$ cube there is an input permutation that requires $\Omega(\sqrt{N}/n^3)$ steps.

Theorem

Any randomized oblivious routing algorithm for permutation routing on the $N = 2^n$ cube must use $\Omega(n)$ random bits to route an arbitrary permutation in O(n) expected time.

proof

Assume that the algorithm uses k random bits.

It can choose between no more than 2^k possible deterministic executions.

There is a deterministic execution \tilde{A} that is chosen with probability $\geq 1/2^k$.

Let π be an input permutation that requires $\Omega(\sqrt{N}/n^3)$ steps in \tilde{A} . The expected running time of this input permutation on the randomized algorithm is $\Omega(\sqrt{N}/(2^k n^3))$

So, if we want this to be O(n) we must take k roughly $\log N = n$.