
The Probabilistic Method

1 If E [X ] = C , then there are values c1 ≤ C and c2 ≥ C such
that Pr(X = c1) > 0 and Pr(X = c2) > 0.

2 If a random object in a set satisfies some property with
positive probability then there is an object in that set that
satisfies that property.



Theorem

Given any graph G = (V ,E ) with n vertices and m edges, there is
a partition of V into two disjoint sets A and B such that at least
m/2 edges connect vertex in A to a vertex in B.

Proof.

Construct sets A and B by randomly assign each vertex to one of
the two sets.
The probability that a given edge connect A to B is 1/2, thus the
expected number of such edges is m/2.
Thus, there exists such a partition.



Maximum Satisfiability

Given m clauses in CNF (Conjunctive Normal Form), assume that
no clause contains a variable and its complement.

Theorem

For any set of m clauses there is a truth assignment that satisfy at
least m/2 of the clauses.

Proof.

Assign random values to the variables. The probability that a given
clause (with k literals) is not satisfied is 2−k , so the probability
that it is satisfied is

1− 2−k ≥ 1

2
.



Monochromatic Complete Subgraphs

Given a complete graph on 1000 vertices, can you color the edges
in two colors such that no clique of 20 vertices is monochromatic?

Theorem

If n ≤ 2k/2 then it is possible to edge color the edges of a complete
graph on n points (Kn), such that is has no monochromatic Kk

subgraph.

Proof:
Consider a random coloring.
For a given set of k vertices, the probability that the clique defined
by that set is monochromatic is bounded by

2× 2−(k2).



There are
(n
k

)
such cliques, thus the probability that any clique is

monochromatic is bounded by(
n

k

)
2× 2−(k2) ≤ nk

k!
2× 2−(k2)

≤ 2(k)
2/2−k(k−1)/2+1 1

k!
< 1.

= 2k/2 + 1/k! < 1

Thus, there is a coloring with the required property.
When n = 1000 ≤ 210 = 2k/2 we get that there exists a
2-colouring of K1000 with no monochromatics K20.



Sample and Modify

An independent set in a graph G is a set of vertices with no edges
between them.
Finding the largest independent set in a graph is an NP-hard
problem.

Theorem

Let G = (V ,E ) be a graph on n vertices with dn/2 edges. Then G
has an independent set with at least n/2d vertices.

Algorithm:

1 Delete each vertex of G (together with its incident edges)
independently with probability 1− 1/d .

2 For each remaining edge, remove it and one of its adjacent
vertices.



X = number of vertices that survive the first step of the algorithm.

E [X ] =
n

d
.

Y = number of edges that survive the first step.
An edge survives if and only if its two adjacent vertices survive.

E [Y ] =
nd

2

(
1

d

)2

=
n

2d
.

The second step of the algorithm removes all the remaining edges,
and at most Y vertices.
Size of output independent set:

E [X − Y ] =
n

d
− n

2d
=

n

2d
.



Conditional Expectation

Definition

E [Y | Z = z ] =
∑
y

y Pr(Y = y | Z = z),

where the summation is over all y in the range of Y .

Lemma

For any random variables X and Y ,

E [X ] =
∑
y

Pr(Y = y)E [X | Y = y ],

where the sum is over all values in the range of Y .



Derandomization using Conditional Expectations

Given a graph G = (V ,E ) with n vertices and m edges, we showed
that there is a partition of V into A and B such that at least m/2
edges connect A to B.
How do we find such a partition?



C (A,B) = number of edges connecting A to B.
If A,B is a random partition E [C (A,B)] = m

2 .
Algorithm:

1 Let v1, v2, . . . , vn be an arbitrary enumeration of the vertices.

2 Let xi be the set where vi is placed (xi ∈ {A,B}).

3 For i = 1 to n do:

1 Place vi such that

E [C (A,B) | x1, x2, . . . , xi ]
≥ E [C (A,B) | x1, x2, . . . , xi−1] ≥ m/2.



Lemma

For all i = 1, . . . , n there is an assignment of vi such that

E [C (A,B) | x1, x2, . . . , xi ]
≥ E [C (A,B) | x1, x2, . . . , xi−1] ≥ m/2.



Proof.

By induction on i .
For i = 1, E [C (A,B) | x1] = E [C (A,B)] = m/2
For i > 1, if we place vi randomly in one of the two sets,

E [C (A,B) | x1, x2, . . . , xi−1]

=
1

2
E [C (A,B) | x1, x2, . . . , xi = A]

+
1

2
E [C (A,B) | x1, x2, . . . , xi = B].

max(E [C (A,B) | x1, x2, . . . , xi = A],

E [C (A,B) | x1, x2, . . . , xi = B])

≥ E [C (A,B) | x1, x2, . . . , xi−1]

≥ m/2



How do we compute

max(E [C (A,B) | x1, x2, . . . , xi = A],

E [C (A,B) | x1, x2, . . . , xi = B])

≥ E [C (A,B) | x1, x2, . . . , xi−1]

We just need to consider edges between vi and v1, . . . , vi−1.
Simple Algorithm:

1 Place v1 arbitrarily.

2 For i = 2 to n do

1 Place vi in the set with smaller number of neighbors.



Dense graphs with no short cycles

Theorem

For every integer k ≥ 3 there exists a graph G with n vertices, at

least 1
4n

1+ 1
k edges and no cycle of length less than k.

Proof: Consider a random graph G ∈ Gn,p with p = n
1
k
−1 and let

the random variable X denote the number of edges in the graph.
Then

E[X ] = p

(
n

2

)
= n

1
k
−1 1

2
n(n − 1)

=
1

2

(
1− 1

n

)
n

1
k
+1



Dense graphs with no short cycles

Let Y be the random variable whose value (for the given graph G )
is number of cycles of length at most k − 1 in G .
Each i-cycle occurs with probability pi and there are

(n
i

) (i−1)!
2

possible cycles of length i . Thus

E[Y ] =
k−1∑
i=1

(
n

i

)
(i − 1)!

2
pi ≤

k−1∑
i=1

nipi

=
k−1∑
i=1

n
i
k

< kn
k−1
k



Dense graphs with no short cycles

Hence

E[X − Y ] ≥ 1

2

(
1− 1

n

)
n

1
k
+1 − kn

k−1
k

≥ 1

4
n

1
k
+1

So, if we delete one edge from every cycle of length at most k − 1
in G the expected number of edges in the resulting graph G ′ is at

least 1
4n

1
k
+1. This means that there exists a graph that has at least

1
4n

1
k
+1 and no cycles with less than k vertices.



High chromatic number and no triangles

The Chromatic number, χ(G ) of a graph G = (V ,E ) is the
minimum integer k so that we can partition V into disjoint sets
V1,V2, . . . ,Vk with the property that no edge is inside any Vi .

Theorem

For every k ≥ 1 there exists a graph with no clique of size 3
(triangle-free) and chromatic number at least k.



High chromatic number and no triangles

Proof Let G ∈ Gn,p where p = n−
2
3

To prove that χ(G ) > k it suffices to show that G has no
independent set of size d nk e. In fact we prove that with high
probability G no has independent set of suze d n

2k e.
Let the random variable I count the number of independent sets of
size d n

2k e in G . Let S be the set of all S ⊆ V of size d n
2k e. Let the

indicator variable IS be one if S is an independent set and 0
otherwise. So I =

∑
{S∈S} IS .

Then we have E [Is ] = (1− p)(d
n
2k
e

2
)



High chromatic number and no triangles

E[I ] =
∑
{S∈S}

E[Is ]

=

(
n

d n
2k e

)
(1− p)(d

n
2k
e

2
)

<

(
n

d n
2k e

)
(1− p)(

n
2k
2

)

Using that
(n
r

)
≤ 2n for all 0 ≤ r ≤ n and 1− x < e−x when

x > 0, we get

E[I ] < 2ne−
pn(n−2k)

8k2

< 2ne−
n
4
3

16k2

<
1

2
,

when n ≥ 212k6.



High chromatic number and no triangles

When n ≥ 212k6 we have E [I ] < 1
2 .

By Markov’s inequality Pr(I > 0) < 1
2 when n ≥ 212k6.

Let T be the number of triangles in G . Now we need to show that
E [T ] is also much less than one, BUT that is not true!

E[T ] =

(
n

3

)
p3 <

n3

3!
(n−

2
3 )3 =

n

6
(1)



High chromatic number and no triangles

We found that E [T ] = n
6 .

By Markov’s inequality, Pr(T ≥ n
2 ) ≤

n
6
n
2

= 1
3 for large n

Now we have Pr(I ≥ 1) + Pr(T ≥ n
2 ) < 1

2 + 1
3 < 1 so there exists

a graph G with I = 0 and T ≤ n
2 .



High chromatic number and no triangles

Choose a set M of at most n
2 vertices which meets all triangles in

g and let G ′ = G −M.
Then G ′ is triangle-free and has at least n

2 vertices. Also G ′ has no
independent set of size d n

2k e (because G has no such set) so

χ(G ′) >
n
2
n
2k

= k.



Randomization as a Resource

Complexity is usually studied in terms of resources, TIME and
SPACE.
We add a new resource, RANDOMNESS, measured by the number
of independent random bits used by the algorithm (= the entropy
of the random source).



Example: Packet Routing

We proved:

Theorem

There is an algorithm for permutation routing on an N = 2n-cube
that uses a total of O(nN) random bits and terminates with high
probability in cn steps, for some constant c.

Can we achieve the same result with fewer random bits?

Theorem

There is an algorithm for permutation routing on an N = 2n-cube
that uses a total of O(n) random bits and terminates with high
probability in cn steps, for some constant c.



Proof

Let A(X ) be a randomized algorithm with input x that uses (up
to) s random bits.
Let A(x , r) be the execution of algorithm A with input x and a
fixed sequence r on s bits.
We can write A(X ) as

1 Choose r uniformly at random in [0, 2s − 1].

2 Run A(X , r).



In the two phase routing algorithm s = log(NN) = nN (it chooses
a random destination independently for each packet).
Let B = {B1, . . . ,Br} be the a collection of 2s deterministic
algorithms A(I , r).
We proved:

Lemma

For a given input permutation π and a deterministic algorithm Bi

chosen uniformly at random from B, the probability that Bi fails to
route π in cn steps is bounded by 1/N.



Choose a random set D = {D1, . . . ,DN3} of N3 elements in B.
Let Xπ

i = 1 if algorithm Di does NOT route permutation π in cn
steps, else X π

i = 0

E [
N3∑
i=1

X π
i ] ≤ N2

Prob(
N3∑
i=1

X π
i ≥ 2N2) ≤ e−N

2/3

Prob(∃π
N3∑
i=1

X π
i ≥ 2N2) ≤ N!e−N

2/3 < 1



Prob(∃π,
N3∑
i=1

Xπ
i ≥ 2N2) ≤ N!e−N

2/3 < 1

Theorem

There exists a set D of N3 deterministic algorithms, such that for
any given permutation π and an algorithm D chosen uniformly at
random from D, algorithm D routes π in cn steps with probability
1− 1/N. The random choice requires O(n) random bits.



Can we do better?

Do we need any random bits?

Definition

A routing algorithm is oblivious if the path taken by one packet is
independent of the source and destinations of any other packets in
the system.

Theorem

Given an N-node network with maximum degree d the routing
time of any deterministic oblivious routing scheme is

Ω(

√
N

d3
).



Theorem

For any deterministic oblivious algorithm for permutation routing
on the N = 2n cube there is an input permutation that requires
Ω(
√
N/n3) steps.

Theorem

Any randomized oblivious routing algorithm for permutation
routing on the N = 2n cube must use Ω(n) random bits to route
an arbitrary permutation in O(n) expected time.



proof

Assume that the algorithm uses k random bits.
It can choose between no more than 2k possible deterministic
executions.
There is a deterministic execution Ã that is chosen with probability
≥ 1/2k .
Let π be an input permutation that requires Ω(

√
N/n3) steps in Ã.

The expected running time of this input permutation on the
randomized algorithm is Ω(

√
N/(2kn3))

So, if we want this to be O(n) we must take k roughly logN = n.


