
k-SAT with few clauses

Theorem (A)

For every natural number k, every k-SAT formula with less than 2k

clauses is satisfiable.

Proof: Consider a random truth assignment which sets variable xi
to 1 with probability 1

2 and to 0 with probability 1
2 for

i = 1, 2, . . . , n.
Note that by this assignment, each of the 2n possible truth
assignments are equally likely (they all have probability 2−n).

k-SAT with few clauses

For each clause Ci we let the random variable Xi take the value
Xi (t) = 1 if t does not satisfy Ci and Xi (t) = 0 if t satisfies Ci .
Hence E (Xi) = 2−k

Let X = X1(t) + X2(t) + . . . + Xm(t). So X counts the number of
clauses that are not satisfied by t.
E (X) =

∑m
i=1 E (Xi) =

∑m
i=1 2−k = 2−k

∑m
i=1 1 = m2−k < 1,

since m < 2k .
Hence, by Markov’s inequality, p(X ≥ 1) ≤ E(X)

1 = E (X) < 1 so
p(X = 0) > 0. This shows that there is at least one of the 2n

truth assignments which satisfies all m clauses.

k-SAT with few clauses

The bound on the number of clauses in the theorem is best
possible:
Suppose we have n = k variables and all the 2k clauses of size k
over these variables (every clause contains each variable either with
or without negation), then clearly this instance is not satisfiable,
since no matter which truth assignment we take, some clause will
have all literals evaluating to 0. But observe that removing just
one we get a satisfiable instance by the theorem!

SAT with few clauses

Using the same argument as above we get the following bound for
general SAT (clauses may have any size):

Theorem (B)

Let F = C1 ∗ C2 ∗ . . . ∗ Cm be an instance of SAT. If we have∑m
i=1 2−|Ci | < 1, then F is satisfiable.

Corollary

For all ε > 0 there exists a polynomial algorithm for solving any
instance of SAT over n variables x1, x2, . . . , xn in which all clauses
have size at least εn.

Proof: Let ε > 0 be given and let F = C1 ∗ C2 ∗ . . . ∗ Cm over the
variables x1, x2, . . . , xn satisfy that |Ci | ≥ εn for each
i ∈ {1, 2, . . . ,m}.

SAT with few clauses

Suppose first that m < 2εn. Then we have

m∑
i=1

2−|Ci | ≤
m∑
i=1

2−εn = m2−εn < 1

Hence it follows from Theorem B that F is satisfiable and our
algorithm stops with a “yes”. Clearly this can be checked in time
polynomial in |F| since we just need to check whether the number
of clauses is less than 2εn. Note that in this case we do not
find a satisfying truth assignment! We just answer correctly
that there exists one.

SAT with few clauses

Now suppose that we found that there was at least 2εn clauses.
Then we simply check all the 2n possible truth assignments to see
whether one of these satisfies F . If we find one that does, we stop
and answer “yes” otherwise, after checking that none of them
satisfy F , we answer “no”. The time required to do this is
proportional to 2n|F|, where |F| is the size of the formula F and
hence of the input. Clearly |F| ≥ 2εn as all clauses have size at

least 1 (in fact |F| ≥ εn2εn). From this we get that 2n ≤ |F|
1
ε so

the running time of our algorithm is proportional to

2n|F| ≤ |F|1+
1
ε which is a polynomial in |F| because ε is a

constant (when we have chosen it).

The Lovasz Local Lemma

Let A1,,An be a set of “bad” events. We want to show that

Pr(∩ni=1Āi) > 0.

1 If
∑n

i=1 Pr(Ai) < 1 then Pr(∩ni=1Āi) > 0.

2 If all the Ai ’s are mutually independent and for all i
Pr(Ai) < 1 then Pr(∩ni=1Āi) = Πn

i=1Pr(Āi) > 0..

3 If each Ai depends only on a few other events: The Lovasz
Local Lemma.

Definition

An event E is mutually independent of the events E1, ...,En, if for
any T ⊂ [1, ..., n],

Pr(E | ∩j∈T Ej) = Pr(E).

Definition

A dependency graph for a set of events E1, ...,En has n vertices
1, ..., n. Events Ei is mutually independent of any set of events
{Ej | j ∈ T} iff there is no edge in the graph connecting i to any
j ∈ T .

Theorem

Let E1, ...,En be a set of events. Assume that

1 For all i , Pr(Ei) ≤ p;

2 The degree of the dependency graph is bounded by d.

3 4dp ≤ 1

then
Pr(∩ni=1Ēi) > 0.

Let S ⊂ {1, ..., n}. We prove by induction on s = 0, ..., n − 1 that
if |S | ≤ s, for all k

Pr(Ek | ∩j∈S Ēj) ≤ 2p.

For s = 0, S = ∅ obvious.
W.l.o.g. renumber the events so that S = {1, ..., s}, and (k, j) is
not and edge of the dependency graph for j > d .

Pr(Ek |
s⋂

j=1

Ēj) =
Pr(Ek ∩

⋂s
j=1 Ēj)

Pr(
⋂s

j=1 Ēj)

=
Pr(Ek ∩

⋂d
j=1 Ēj |

⋂s
j=d+1 Ēj)Pr(

⋂s
j=d+1 Ēj)

Pr(
⋂d

j=1 Ēj |
⋂s

j=d+1 Ēj)Pr(
⋂s

j=d+1 Ēj)

=
Pr(Ek ∩

⋂d
j=1 Ēj |

⋂s
j=d+1 Ēj)

Pr(
⋂d

j=1 Ēj |
⋂s

j=d+1 Ēj)

Pr(Ek ∩
d⋂

j=1

Ēj |
s⋂

j=d+1

Ēj) ≤ Pr(Ek |
s⋂

j=d+1

Ēj) = Pr(Ek) ≤ p.

Using the induction hypothesis we prove:

Pr(
d⋂

j=1

Ēj |
s⋂

j=d+1

Ēj) ≥ 1−
d∑

i=1

Pr(Ei |
s⋂

j=d+1

Ēj)

≥ 1−
d∑

i=1

2p

≥ 1− 2pd ≥ 1/2.

Pr(Ek |
s⋂

j=1

Ēj) ≤
p

1/2
= 2p

proving the induction hypothesis.

Now we can complete the proof:

Pr(
n⋂

j=1

Ēj) = Πn
i=1Pr(Ēi |

i−1⋂
j=1

Ēj)

= Πn
i=1

(
1− Pr(Ei |

i−1⋂
j=1

Ēj)
)
≥ Πn

i=1(1− 2p) > 0.

Application: Edge-Disjoint Paths

Assume that n pairs of users need to communicate using
edge-disjoint paths on a given network.
Each pair i = 1, . . . , n can choose a path from a collection Fi of m
paths.

Theorem

If for each i 6= j , any path in Fi shares edges with no more than k
paths in Fj , where 8nk

m ≤ 1, then there is a way to choose n
edge-disjoint paths connecting the n pairs.

Proof
Consider the probability space defined by each pair choosing a path
independently uniformly at random from its set of m paths.
Ei ,j = the paths chosen by pairs i and j share at least one edge.
A path in Fi shares edges with no more than k paths in Fj ,

p = Pr(Ei ,j) ≤
k

m
.

Let d be the degree of the dependency graph.
Since event Ei ,j is independent of all events Ei ′,j ′ when i ′ 6∈ {i , j}
and j ′ 6∈ {i , j}, we have d < 2n.

4dp <
8nk

m
≤ 1

Pr(∩i 6=j Ēi ,j) > 0.

Theorem

Consider a CNF formula with k literals per clause. Assume that
each variable appears is no more than T = 2k

4k clauses, then the
formula has a satisfying assignment,

Proof.

Assume that the formula has m clauses.
For i = 1, ...,m, let Ei be the event “The random assignment does
not satisfy clause i”.

Pr(Ei) =
1

2k
.

The event Ei is mutually independent of all the events related to
clauses that do not share variables with clause i .
The degree of Ei in the dependency graph is bounded by kT .
Since

4dp ≤ 4kT 2−k ≤ 4k
2k

4k
2−k ≤ 1

Pr(Ēi ,, Ēm) > 0.

Algorithm

Assume m clauses, ` variables, each clause has k literals, each
variable appears in no more than T = 2αk clauses.
First Part:
A clause is Dangerous at a given step if both

1 The clause is not satisfied;

2 At least k/2 of its variables were fixed.

For i = 1 to `
If xi is not in a dangerous clause assign it a random value in {0, 1}.

A surviving clause is a clause that is not satisfied at the end of
phase one.
A surviving clause has no more than k/2 of its variables fixed.
A deferred variable is a variable that was not assigned a value in
the first part.

Lemma

There is an assignment of values to the deferred variables such that
all the surviving clauses are satisfied (thus the formula is satisfied).

Lemma

Let G ′ be the dependency graph on the surviving clauses. With
high probability all connected components in G ′ have size
O(log m).

Part Two:
Using exhaustive search assign values to the deferred variable to
complete the truth assignment for the formula.
If a connected component has O(log m) clauses it has O(k log m)
variables. Assuming k = O(1) we can check all assignments in
polynomial in m number of steps.

Lemma

There is an assignment of values to the deferred variables such that
all the surviving clauses are satisfied (thus the formula is satisfied).

At the end of the first phase we have m′ “surviving clauses’ (all the
rest are satisfied), each surviving clause has at least k/2 deferred
variables.
Consider a random assignment of the deferred variables.
Let Ei be the event clause i (of the surviving clauses) is not
satisfied.

p = Pr(Ei) ≤ 2−k/2.

The degree of the dependency graph is bounded by

d = kT < k2αk .

Since
4dp ≤ 4k2αk2−k/2 ≤ 1

there is a satisfying assignment of the deferred variables that
(together with the assignment of the other variables) satisfies the
formula.

Lemma

Let G ′ be the dependency graph on the surviving clauses. With
high probability all connected components in G ′ have size
O(log m).

Assume that there is a connected component R of size r = |R|.
Since the degree of a vertex in R is bounded by d , there must be a
set R ′ of |R ′| = r/d3 vertices in R which are at distance at least 4
from each other.
A clause “survives” the first part if it is at distance at most 1 from
a dangerous clause. Thus, for each clause in R ′ there is a distinct
dangerous clause, and these dangerous clauses are at distance 2
from each other.

The probability that a given clause is dangerous is at most 2−k/2.
The probability that a given clause C survives is at most
(d + 1)2−k/2 (C must be unsatisfied after the first phase and
either C is dangerous or at least one of its neighbours must be
dangerous).
These events are independent for vertices in R ′. Thus the
probability of a particular connected component of r vertices is
bounded by (

(d + 1)2−k/2
)r/d3

How many possible connected components of size r are in a graph
of m nodes and maximum degree d?

Lemma

There are no more than md2r possible connected components of
size r in a graph of m vertices and maximum degree d.

Proof.

A connected component of size r has a spanning tree of r − 1
edges.
We can choose a “root” for the tree in m ways.
A tree can be defined by an Euler tour that starts and ends at the
root and traverses each edge twice.
At each node the tour can continue in up to d ways. Thus, for a
given root there are no more than d2r different Euler tours.

Thus, the probability that at the end of the first phase there is a
connected component of size r = Ω(log m) is bounded by

md2r
(
(d + 1)2−k/2

)r/d3

= o(1)

for d = k2αk , α > 0 sufficiently small.

Each deferred variable appears in only one component. A
component of size O(log m) has only O(log m) variables. Thus, we
can enumerate (try) all possibilities in time polynomial in m.

Theorem

Given a CNF formula of m clauses, each clause has k = O(1)
literals, each variables appears in up to 2αk clauses. For a
sufficiently small α > 0 there is an algorithm that finds a satisfying
assignment to the formula in time polynomial in m.

