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Abstract

A large number of real-world planning problems called combinatorial
optimization problems share the following properties: They are optimiza-
tion problems, are easy to state, and have a finite but usually very large
number of feasible solutions. While some of these as e.g. the Shortest Path
problem and the Minimum Spanning Tree problem have polynomial algo-
ritms, the majority of the problems in addition share the property that no
polynomial method for their solution is known. Examples here are vehicle
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routing, crew scheduling, and production planning. All of these problems
are NP-hard.

Branch and Bound (B&B) is by far the most widely used tool for solv-
ing large scale NP-hard combinatorial optimization problems. B&B is,
however, an algorithm paradigm, which has to be filled out for each spe-
cific problem type, and numerous choices for each of the components ex-
ist. Even then, principles for the design of efficient B&B algorithms have
emerged over the years.

In this paper I review the main principles of B&B and illustrate the
method and the different design issues through three examples: the Sym-
metric Travelling Salesman Problem, the Graph Partitioning problem, and
the Quadratic Assignment problem.

1 Introduction.

Solving NP-hard discrete optimization problems to optimality is often an im-
mense job requiring very efficient algorithms, and the B&B paradigm is one of
the main tools in construction of these. A B&B algorithm searches the complete
space of solutions for a given problem for the best solution. However, explicit
enumeration is normally impossible due to the exponentially increasing number
of potential solutions. The use of bounds for the function to be optimized com-
bined with the value of the current best solution enables the algorithm to search
parts of the solution space only implicitly.

At any point during the solution process, the status of the solution with
respect to the search of the solution space is described by a pool of yet unexplored
subset of this and the best solution found so far. Initially only one subset exists,
namely the complete solution space, and the best solution found so far is ∞. The
unexplored subspaces are represented as nodes in a dynamically generated search
tree, which initially only contains the root, and each iteration of a classical B&B
algorithm processes one such node. The iteration has three main components:
selection of the node to process, bound calculation, and branching. In Figure 1,
the initial situation and the first step of the process is illustrated.

The sequence of these may vary according to the strategy chosen for selecting
the next node to process. If the selection of next subproblem is based on the
bound value of the subproblems, then the first operation of an iteration after
choosing the node is branching, i.e. subdivision of the solution space of the node
into two or more subspaces to be investigated in a subsequent iteration. For
each of these, it is checked whether the subspace consists of a single solution, in
which case it is compared to the current best solution keeping the best of these.
Otherwise the bounding function for the subspace is calculated and compared
to the current best solution. If it can be established that the subspace cannot
contain the optimal solution, the whole subspace is discarded, else it is stored in
the pool of live nodes together with it’s bound. This is in [2] called the eager
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Figure 1: Illustration of the search space of B&B.
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strategy for node evaluation, since bounds are calculated as soon as nodes are
available. The alternative is to start by calculating the bound of the selected
node and then branch on the node if necessary. The nodes created are then
stored together with the bound of the processed node. This strategy is called
lazy and is often used when the next node to be processed is chosen to be a live
node of maximal depth in the search tree.

The search terminates when there is no unexplored parts of the solution space
left, and the optimal solution is then the one recorded as ”current best”.

The paper is organized as follows: In Section 2, I go into detail with terminol-
ogy and problem description and give the three examples to be used succeedingly.
Section 2.1, 2.2, and 2.3 then treat in detail the algorithmic components selec-
tion, bounding and branching, and Section 2.4 briefly comments upon methods
for generating a good feasible solution prior to the start of the search. I then
describe personal experiences with solving two problems using parallel B&B in
Section 3.1 and 3.2, and Section 4 discusses the impact of design decisions on the
efficiency of the complete algorithm.

2 B&B - terminology and general description.

In the following I consider minimization problems - the case of maximization
problems can be dealt with similarly. The problem is to minimize a function
f(x) of variables (x1 · · ·xn) over a region of feasible solutions, S :

minx∈S f(x)

The function f is called the objective function and may be of any type. The set
of feasible solutions is usually determined by general conditions on the variables,
e.g. that these must be non-negative integers or binary, and special constraints
determining the structure of the feasible set. In many cases, a set of potential
solutions, P , containing S, for which f is still well defined, naturally comes to
mind, and often, a function g(x) defined on S (or P ) with the property that
g(x) ≤ f(x) for all x in S (resp. P ) arises naturally. Both P and g are very
useful in the B&B context. Figure 2 illustrates the situation where S and P are
intervals of reals.

I will use the terms subproblem to denote a problem derived from the orig-
inally given problem through addition of new constraints. A subproblem hence
corresponds to a subspace of the original solution space, and the two terms are
used interchangeably and in the context of a search tree interchangeably with the
term node. In order to make the discussions more explicit I use three problems
as examples. The first one is one of the most famous combinatorial optimization
problems: the Travelling Salesman problem. The problem arises naturally in
connection with routing of vehicles for delivery and pick-up of goods or persons,

4



g

S

P

f

Figure 2: The relation between the bounding function g and the objective func-
tion f on the sets S and P of feasible and potential solutions of a problem.

5



A

B

C

D

E

FG

H

C D E F GBA

A

B

C

 D

E

F

G

11 24 25 30 29 150

11 0 13 20

H

32 37 17

24 13 0 16 30 39 29

H

15

17

22

25 20 16 0 15 23 18 12

30 32 30 15 0 9 23 15

29 37 39 23 9 0 14 21

15 17 29 18 23 14 0 7

15 17 22 12 15 21 7 0

Figure 3: The island Bornholm and the distances between interesting sites

but has numerous other applications. A famous and thorough reference is [11].

Example 1: The Symmetric Travelling Salesman problem. In Figure 3, a map
over the Danish island Bornholm is given together with a distance table showing
the distances between major cities/tourist attractions. The problem of a biking
tourist, who wants to visit all these major points, is to find a tour of minimum
length starting and ending in the same city, and visiting each other city exactly
once. Such a tour is called a Hamilton cycle. The problem is called the symmetric
Travelling Salesman problem (TSP) since the table of distances is symmetric.

In general a symmetric TSP is given by a symmetric n × n matrix D of
non-negative distances, and the goal is to find a Hamilton tour of minimum
length. In terms of graphs, we consider a complete undirected graph with n
vertices Kn and non-negative lengths assigned to the edges, and the goal is to
determine a Hamilton tour of minimum length. The problem may also be stated
mathematically by using decision variables to describe which edges are to be
included in the tour. We introduce 0-1 variables xij , 1 ≤ i < j ≤ n, and interpret
the value 0 (1 resp.) to mean ”not in tour” (”in tour” resp.) The problem is then

min
n−1∑
i=1

n∑
j=i+1

dijxij

such that

i−1∑
k=1

xki +
n∑

k=i+1

xik = 2, i ∈ {1, ..., n}
∑

i,j∈Z

xij < |Z| ∅ ⊂ Z ⊂ V

xij ∈ {0, 1}, i, j ∈ {1, ..., n}
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Figure 4: A potential, but not feasible solution to the biking tourist’s problem

The first set of constraints ensures that for each i exactly two variables corre-
sponding to edges incident with i are chosen. Since each edge has two endpoints,
this implies that exactly n variables are allowed to take the value 1. The sec-
ond set of constraints consists of the subtour elimination constraints. Each of
these states for a specific subset S of V that the number of edges connecting
vertices in S has to be less than |S| thereby ruling out that these form a subtour.
Unfortunately there are exponentially many of these constraints.

The given constraints determine the set of feasible solutions S. One obvious
way of relaxing this to a set of potential solutions is to relax (i.e. discard) the
subtour elimination constrains. The set of potential solutions P is then the family
of all sets of subtours such that each i belongs to exactly one of the subtours in
each set in the family, cf. Figure 4. In Section 2.1 another possibility is decribed,
which in a B&B context turns out to be more appropriate.

A subproblem of a given symmetric TSP is constructed by deciding for a sub-
set A of the edges of G that these must be included in the tour to be constructed,
while for another subset B the edges are excluded from the tour. Exclusion of
an edge (i, j) is usually modeled by setting cij to ∞, whereas the inclusion of an
edge can be handled in various ways as e.g. graph contraction. The number of
feasible solutions to the problem is (n−1)!/2, which for n = 50 is appr. 3×1062 2

The following descriptions follow [4, 5].

Example 2: The Graph Partitioning Problem. The Graph Partitioning prob-
lem arises in situations, where it is necessary to minimize the number (or weight
of) connections between two parts of a network of prescribed size. We consider
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Figure 5: A graph partitioning problem and a feasible solution.

a given weighted, undirected graph G with vertex set V and edge set E , and a
cost function c : E → N . The problem is to partition V into two disjoint subsets
V1 and V2 of equal size such that the sum of costs of edges connecting vertices
belonging to different subsets is as small as possible. Figure 5 shows an instance
of the problem:

The graph partitioning problem can be formulated as a quadratic integer
programming problem. Define for each vertex v of the given graph a variable xv,
which can attain only the values 0 and 1. A 1-1 correspondence between partitions
and assignments of values to all variables now exists: xv = 1 (respectively = 0)
if and only if v ∈ V1 (respectively v ∈ V2). The cost of a partition is then

∑
v∈V1,u∈V2

cuvxv(1 − xu)

A constraint on the number of variables attaining the value 1 is included to
exclude infeasible partitions.

∑
v∈V

xv = |V |/2

The set of feasible solutions S is here the partitions of V into two equal-sized
subsets. The natural set P of potential solutions are all partitions of V into two
non-empty subsets.

Initially V1 and V2 are empty corresponding to that no variables have yet been
assigned a value. When some of the vertices have been assigned to the sets (the
corresponding variables have been assigned values 1 or 0), a subproblem has been
constructed.
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Figure 6: A Quadratic Assignment problem of size 4.

The number of feasible solutions to a GPP with 2n vertices equals the bino-
mial coefficient C(2n, n). For 2n = 120 the number of feasible solutions is appr.
9.6 × 1034. 2

Example 3: The Quadratic Assignment Problem. Here, I consider the Koop-
mans-Beckman version of the problem, which can informally be stated with refer-
ence to the following practical situation: A company is to decide the assignment
of n of facilities to an equal number of locations and wants to minimize the total
transportation cost. For each pair of facilities (i, j) a flow of communication fi,j

is known, and for each pair of locations (l, k) the corresponding distance dl,k is
known. The transportation cost between facilities i and j, given that i is assigned
to location l and j is assigned to location k, is fi,j · dl, k, and the objective of the
company is to find an assignment minimizing the sum of all transportation costs.
Figure 6 shows a small example with 4 facilities and 4 locations. The assignment
of facilities A,B,C, and D on sites 1,2,3, and 4 respectively has a cost of 224.

Each feasible solution corresponds to a permutation of the facilities, and let-
ting S denote the group of permutations of n elements, the problem can hence
formally be stated as

minπ∈S
∑n

i=1

∑n
j=1 fi,j · dπ(i),π(j)

A set of potential solutions is e.g. obtained by allowing more than one facility
on each location.

Initially no facilities have been placed on a location, and subproblems of the
original problem arise when some but not all facilities have been assigned to
locations.

Again the number of feasible solutions grows exponentially: For a problem
with n facilities to be located, the number of feasible solutions is n!, which for
n = 20 is appr. 2.43 × 1018. 2
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The solution of a problem with a B&B algorithm is traditionally described
as a search through a search tree, in which the root node corresponds to the
original problem to be solved, and each other node corresponds to a subproblem
of the original problem. Given a node Q of the tree, the children of Q are
subproblems derived from Q through imposing (usually) a single new constraint
for each subproblem, and the descendants of Q are those subproblems, which
satisfy the same constraints as Q and additionally a number of others. The
leaves correspond to feasible solutions, and for all NP-hard problems, instances
exist with an exponential number of leaves in the search tree. To each node
in the tree a bounding function g associates a real number called the bound for
the node. For leaves the bound equals the value of the corresponding solution,
whereas for internal nodes the value is a lower bound for the value of any solution
in the subspace corresponding to the node. Usually g is required to satisfy the
following three conditions:

1. g(Pi) ≤ f(Pi) for all nodes Pi in the tree

2. g(Pi) = f(Pi) for all leaves in the tree

3. g(Pi) ≥ g(Pj) if Pj is the father of Pi

These state that g is a bounding function, which for any leaf agrees with the
objective function, and which provides closer and closer (or rather not worse)
bounds when more information in terms of extra constraints for a subproblem is
added to the problem description.

The search tree is developed dynamically during the search and consists ini-
tially of only the root node. For many problems, a feasible solution to the problem
is produced in advance using a heuristic, and the value hereof is used as the cur-
rent best solution (called the incumbent). In each iteration of a B&B algorithm, a
node is selected for exploration from the pool of live nodes corresponding to unex-
plored feasible subproblems using some selection strategy. If the eager strategy is
used, a branching is performed: Two or more children of the node are constructed
through the addition of constraints to the subproblem of the node. In this way
the subspace is subdivided into smaller subspaces. For each of these the bound for
the node is calculated, possibly with the result of finding the optimal solution to
the subproblem, cf. below. In case the node corresponds to a feasible solution or
the bound is the value of an optimal solution, the value hereof is compared to the
incumbent, and the best solution and its value are kept. If the bound is no better
than the incumbent, the subproblem is discarded (or fathomed), since no feasible
solution of the subproblem can be better that the incumbent. In case no feasible
solutions to the subproblem exist the subproblem is also fathomed. Otherwise
the possibility of a better solution in the subproblem cannot be ruled out, and the
node (with the bound as part of the information stored) is then joined to the pool

10



of live subproblems. If the lazy selection strategy is used, the order of bound cal-
culation and branching is reversed, and the live nodes are stored with the bound
of their father as part of the information. Below, the two algorithms are sketched:

Eager Branch and Bound

Initialize: Incumbent := ∞; LB(P0) := g(P0); Live := {(P0, LB(P0))}
Repeat until Live = ∅

Select the node P from Live to be processed; Live := Live \ {P};
Branch on P generating P1, ...Pk;
For 1 ≤ i ≤ k do

Bound Pi : LB(Pi) := g(Pi) ;
If LB(Pi) = f(X) for a feasible solution X

and f(X) < Incumbent then
Incumbent := f(X); Solution := X;
go to EndBound;

If LB(Pi) ≥ Incumbent then fathom Pi

else Live := Live ∪{(Pi, LB(Pi))}
EndBound;

OptimalSolution := Solution; OptimumValue := Incumbent

11



Lazy Branch and Bound

Initialize: Incumbent := -∞; Live := {(P0,−∞)}
Repeat until Live = ∅

Select the node P from Live to be processed; Live := Live \ {P};
Bound P : LB(P ) := g(P )

If LB(P ) = f(X) for a feasible solution X
and f(X) < Incumbent then

Incumbent := f(X); Solution := X;
go to EndBound;

If LB(P ) ≥ Incumbent then fathom P
else Branch on P generating P1, ...Pk;

For 1 ≤ i ≤ k do
Live := Live ∪{(Pi, LB(P ))};

EndBound;

OptimalSolution := Solution; OptimumValue := Incumbent;

A B&B algorithm for a minimization problem hence consists of three main
components:

1. a bounding function providing for a given subspace of the solution space a
lower bound for the best solution value obtainable in the subspace,

2. a strategy for selecting the live solution subspace to be investigated in the
current iteration, and

3. a branching rule to be applied if a subspace after investigation cannot be
discarded, hereby subdividing the subspace considered into two or more
subspaces to be investigated in subsequent iterations.

In the following, I discuss each of these key components briefly.

In addition to these, an initial good feasible solution is normally produced
using a heuristic whenever this is possible in order to facilitate fathoming of
nodes as early as possible. If no such heuristic exists, the initial value of the
incumbent is set to infinity. It should be noted that other methods to fathom
solution subspaces exist, e.g. dominance tests, but these are normally rather
problem specific and will not be discussed further here. For further reference see
[8].

12



2.1 Bounding function.

The bounding function is the key component of any B&B algorithm in the sense
that a low quality bounding function cannot be compensated for through good
choices of branching and selection strategies. Ideally the value of a bounding
function for a given subproblem should equal the value of the best feasible solution
to the problem, but since obtaining this value is usually in itself NP-hard, the
goal is to come as close as possible using only a limited amount of computational
effort (i.e. in polynomial time), cf. the succeeding discussion. A bounding
function is called strong, if it in general gives values close to the optimal value
for the subproblem bounded, and weak if the values produced are far from the
optimum. One often experiences a trade off between quality and time when
dealing with bounding functions: The more time spent on calculating the bound,
the better the bound value usually is. It is normally considered beneficial to use
as strong a bounding function as possible in order to keep the size of the search
tree as small as possible.

Bounding functions naturally arise in connection with the set of potential
solutions P and the function g mentioned in Section 2. Due to the fact that
S ⊆ P , and that g(x) ≤ f(x) on P , the following is easily seen to hold:

minx∈P g(x) ≤
{

minx∈P f(x)
minx∈S g(x)

}
≤ minx∈S f(x)

If both of P and g exist there are now a choice between three optimization
problems, for each of which the optimal solution will provide a lower bound for
the given objective function. The “skill” here is of course to chose P and/or g so
that one of these is easy to solve and provides tight bounds.

Hence there are two standard ways of converting the NP-hard problem of
solving a subproblem to optimality into a P-problem of determining a lower
bound for the objective function. The first is to use relaxation - leave out some
of the constraints of the original problem thereby enlarging the set of feasible
solutions. The objective function of the problem is maintained. This corresponds
to minimizing f over P . If the optimal solution to the relaxed subproblem satisfies
all constraints of the original subproblem, it is also optimal for this, and is hence a
candidate for a new incumbent. Otherwise, the value is a lower bound because the
minimization is performed over a larger set of values than the objective function
values for feasible solutions to the original problem. For e.g. GPP, a relaxation
is to drop the constraint that the sizes of V1 and V2 are to be equal.

The other way of obtaining an easy bound calculation problem is to minimize
g over S, i.e. to maintain the feasible region of the problem, but modify the
objective function at the same time ensuring that for all feasible solutions the
modified function has values less than or equal to the original function. Again one
can be sure that a lower bound results from solving the modified problem to op-
timality, however, it is generally not true that the optimal solution corresponding
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to the modified objective function is optimal for the original objective function
too. The most trivial and very weak bounding function for a given minimization
problem obtained by modification is the sum of the cost incurred by the variable
bindings leading to the subproblem to be bounded. Hence all feasible solutions
for the subproblem are assigned the same value by the modified objective func-
tion. In GPP this corresponds to the cost on edges connecting vertices assigned
to V1 in the partial solution with vertices assigned to V2 in the partial solution,
and leaving out any evaluation of the possible costs between one assigned and
one unassigned vertex, and costs between two assigned vertices. In QAP, an
initial and very weak bound is the transportation cost between facilities already
assigned to locations, leaving out the potential costs of transportation between
one unassigned and one assigned, as well as between two unassigned facilities.
Much better bounds can be obtained if these potential costs are included in the
bound, cf. the Roucairol-Hansen bound for GPP and the Gilmore-Lawler bound
for QAP as described e.g. in [4, 5].

Combining the two strategies for finding bounding functions means to mini-
mize g over P , and at first glance this seems weaker than each of those. However,
a parameterized family of lower bounds may result, and finding the parameter
giving the optimal lower bound may after all create very tight bounds. Bounds
calculated by so-called Lagrangean relaxation are based on this observation - these
bounds are usually very tight but computationally demanding. The TSP provides
a good example hereof.

Example 4: The 1-tree bound for symmetric TSP problems. As mentioned,
one way of relaxing the constraints of a symmetric TSP is to allow subtours.
However, the bounds produced this way are rather weak. One alternative is the
1-tree relaxation.

Here one first identifies a special vertex, “#1”, which may be any vertex
of the graph. “#1” and all edges incident to this are removed from G, and a
minimum spanning tree Trest is found for the remaining graph. Then the two
shortest edges e1, e2 incident to “#1” are added to Trest producing the 1-tree Tone

of G with respect to “#1”, cf. Figure 7.
The total cost of Tone is a lower bound of the value of an optimum tour. The

argument for this is as follows: First note that a Hamilton tour in G consists of
two edges e′1, e

′
2 and a tree T ′

rest in the rest of G. Hence the set of Hamilton tours
of G is a subset of the set of 1-trees of G. Since e1, e2 are the two shortest edges
incident to “#1” and Trest is the minimum spanning tree in the rest of G, the
cost of Tone is less than or equal the cost of any Hamilton tour.

In case Tone is a tour, we have found the optimal solution to our subproblem -
otherwise a vertex of degree at least 3 exists and we have to perform a branching.

The 1-tree bound can be strengthened using the idea of problem transfor-
mation: Generate a new symmetric TSP problem having the same optimal tour
as the original, for which the 1-tree bound is tighter. The idea is that vertices
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15



of Tone with high degree are incident with too many attractive edges, whereas
vertices of degree 1 have too many unattractive edges. Denote by πi the degree
of vertex i minus 2: πi := deg(vi) − 2. Note that the sum over V of the values
π equals 0 since Tone has n edges, and hence the sum of deg(vi) equals 2n. Now
for each edge (i, j) we define the transformed cost c′ij to be cij + πi + πj . Since
each vertex in a Hamilton tour is incident to exactly two edges, the new cost
of a Hamilton tour is equal to the current cost plus two times the sum over V
of the values π. Since the latter is 0, the costs of all tours are unchanged, but
the costs of 1-trees in general increase. Hence calculating the 1-tree bound for
the transformed problem often gives a better bound, but not necessarily a 1-tree,
which is a tour.

The trick may be repeated as many times as one wants, however, for large
instances a tour seldomly results. Hence, there is a trade-off between time and
strength of bound: should one branch or should one try to get an even stronger
bound than the current one by a problem transformation ? Figure 7 (c) shows
the first transformation for the problem of Figure 7 (b).

2.2 Strategy for selecting next subproblem.

The strategy for selecting the next live subproblem to investigate usually reflects
a trade off between keeping the number of explored nodes in the search tree low,
and staying within the memory capacity of the computer used. If one always
selects among the live subproblems one of those with the lowest bound, called
the best first search strategy, BeFS, no superfluous bound calculations take place
after the optimal solution has been found. Figure 8 (a) shows a small search tree
- the numbers in each node corresponds to the sequence, in which the nodes are
processed when BeFS is used.

The explanation of the property regarding superfluos bound calculations lies
in the concept of critical subproblems. A subproblem P is called critical if the
given bounding function when applied to P results in a value strictly less than
the optimal solution of the problem in question. Nodes in the search tree corre-
sponding to critical subproblems have to be partitioned by the B&B algorithm
no matter when the optimal solution is identified - they can never be discarded
by means of the bounding function. Since the lower bound of any subspace con-
taining an optimal solution must be less than or equal to the optimum value,
only nodes of the search tree with lower bound less than or equal to this will be
explored. After the optimal value has been discovered only critical nodes will be
processed in order to prove optimality. The preceding argument for optimality
of BeFS with respect to number of nodes processed is valid only if eager node
evaluation is used since the selection of nodes is otherwise based on the bound
value of the father of each node. BeFS may, however, also be used in combination
with lazy node evaluation.

Even though the choice of the subproblem with the current lowest lower bound
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Figure 8: Search strategies in B&B: (a) Best First Search, (b) Breadth First
Search, and (c) Depth First Search.
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makes good sense also regarding the possibility of producing a good feasible
solution, memory problems arise if the number of critical subproblems of a given
problem becomes too large. The situation more or less corresponds to a breath
first search strategy, in which all nodes at one level of the search tree are processed
before any node at a higher level. Figure 8 (b) shows the search tree with the
numbers in each node corresponding to the BFS processing sequence. The number
of nodes at each level of the search tree grows exponentially with the level making
it infeasible to do breadth first search for larger problems. For GPP sparse
problems with 120 vertices often produce in the order of a few hundred of critical
subproblems when the Roucairol-Hansen bounding function is used [4], and hence
BeFS seems feasible. For QAP the famous Nugent20 problem [13] produces
3.6× 108 critical nodes using Gilmore-Lawler bounding combined with detection
of symmetric solutions [5], and hence memory problems may be expected if BeFS
is used.

The alternative used is depth first search, DFS. Here a live node with largest
level in the search tree is chosen for exploration. Figure 8 (c) shows the DFS
processing sequence number of the nodes. The memory requirement in terms of
number of subproblems to store at the same time is now bounded above by the
number of levels in the search tree multiplied by the maximum number of children
of any node, which is usually a quite manageable number. DFS can be used both
with lazy and eager node evaluation. An advantage from the programming point
of view is the use of recursion to search the tree - this enables one to store the
information about the current subproblem in an incremental way, so only the
constraints added in connection with the creation of each subproblem need to be
stored. The drawback is that if the incumbent is far from the optimal solution,
large amounts of unnecessary bounding computations may take place.

In order to avoid this, DFS is often combined with a selection strategy, in
which one of the branches of the selected node has a very small lower bound and
the other a very large one. The idea is that exploring the node with the small
lower bound first hopefully leads to a good feasible solution, which when the
procedure returns to the node with the large lower bound can be used to fathom
the node. The node selected for branching is chosen as the one, for which the
difference between the lower bounds of its children is as large as possible. Note
however that this strategy requires the bound values for children to be known,
which again may lead to superfluous calculations.

A combination of DFS as the overall principle and BeFS when choice is to be
made between nodes at the same level of the tree is also quite common.

In [2] an experimental comparison of BeFS and DFS combined with both
eager and lazy node evaluation is performed for QAP. Surprisingly, DFS is su-
perior to BeFS in all cases, both in terms of time and in terms of number of
bound calculations. The reason turns out to be that in practice, the bounding
and branching of the basic algorithm is extended with additional tests and calcu-
lations at each node in order to enhance efficiency of the algorithm. Hence, the
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theoretical superiority of BeFS should be taken with a grain of salt.

2.3 Branching rule.

All branching rules in the context of B&B can bee seen as subdivision of a part of
the search space through the addition of constraints, often in the form of assigning
values to variables. If the subspace in question is subdivided into two, the term
dichotomic branching is used, otherwise one talks about polytomic branching.
Convergence of B&B is ensured if the size of each generated subproblem is smaller
than the original problem, and the number of feasible solutions to the original
problem is finite. Normally, the subproblems generated are disjoint - in this way
the problem of the same feasible solution appearing in different subspaces of the
search tree is avoided.

For GPP branching is usually performed by choosing a vertex not yet assigned
to any of V1 and V2 and assigning it to V1 in one of the new subproblems (corre-
sponding to that the variable of the node receives the value 1) and to V2 in the
other (variable value equal to 0). This branching scheme is dichotomic, and the
subspaces generated are disjoint.

In case of QAP, an unassigned facility is chosen, and a new subproblem is
created for each of the free location by assigning the chosen facility to the location.
The scheme is called branching on facilities and is polytomic, and also here the
subspaces are disjoint. Also branching on locations is possible.

For TSP branching may be performed based on the 1-tree generated during
bounding. If all vertices have degree 2 the 1-tree is a tour, and hence an optimal
solution to the subproblem. Then no further branching is required. If a node
has degree 3 or more in the 1-tree, any such node may be chosen as the source
of branching. For the chosen node, a number of subproblems equal to the degree
is generated. In each of these one of the edges of the 1-tree is excluded from the
graph of the subproblem ruling out the possibility that the bound calculation
will result in the same 1-tree. Figure 9 shows the branching taking place after
the bounding in Figure 7. The bound does, however, not necessarily change, and
identical subproblems may arise after a number of branchings. The effect of the
latter is not an incorrect algorithm, but a less efficient algorithm. The problem
is further discussed as an exercise.

2.4 Producing an initial solution.

Although often not explicitly mentioned, another key issue in the solution of
large combinatorial optimization problems by B&B is the construction of a good
initial feasible solution. Any heuristic may be used, and presently a number of
very good general heuristics as well as a wealth of very problem specific heuristics
are available. Among the general ones (also called meta-heuristics or paradigms
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Figure 9: Branching from a 1-tree in a B&B algorithm for the symmetric TSP.

for heuristics), Simulated Annealing, Genetic Algorithms, and Tabu Search are
the most popular.

As mentioned, the number of subproblems explored when the DFS strategy
for selection is used depends on the quality of the initial solution - if the heuristic
identifies the optimal solution so that the B&B algorithm essentially verifies the
optimality, then even DFS will only explore critical subproblems. If BeFS is used,
the value of a good initial solution is less obvious.

Regarding the three examples, a good and fast heuristic for GPP is the
Kernighan-Lin variable depth local search heuristic. For QAP and TSP, very
good results have been obtained with Simulated Annealing.

3 Personal Experiences with GPP and QAP.

The following subsections briefly describe my personal experiences using B&B
combined with parallel processing to solve GPP and QAP. Most of the material
stems from [3, 4] and [5]. Even though parallelism is not an integral part of B&B,
I have chosen to present the material, since the key components of the B&B are
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unchanged. A few concepts from parallel processing is, however, necessary.
Using parallel processing of the nodes in the search tree of a B&B algorithm

is a natural idea, since the bound calculation and the branching in each node is
independent. The aim of the parallel procesing is to speed up the execution time
of the algorithm, To measure the success in this aspect, the speed-up of adding
processors is measured. The relative speed-up using p processors is defined to
be the processing time T (1) using one processor divided by the processing time
T (p) using p processors:

S(p) = T (1)/T (p)

The ideal value of S(p) is p - then the problem is solved p times faster with p
processors than with 1 processor.

An important issue in parallel B&B is distribution of work: in order to obtain
as short running time as possible, no processor should be idle at any time during
the computation. If a distributed system or a network of workstations is used,
this issue becomes particularly crucial since it is not possible to maintain a central
pool of live subproblems. Various possibilities for load balancing schemes exist -
two concrete examples are given in the following, but additional ones are described
in [7].

3.1 Solving the Graph Partitioning Problem in Parallel.

GPP was my first experience with parallel B&B, and we implemented two parallel
algorithms for the problem in order to investigate the trade off between bound
quality and time to calculate the bound. One - called the CT-algorithm - uses an
easily computable bounding function based on the principle of modified objective
function and produces bounds of acceptable quality, whereas the other - the RH-
algorithm - is based on Lagrangean relaxation and has a bounding function giving
tight, but computationally expensive bounds.

The system used was a 32 processor IPSC1/d5 hypercube equipped with Intel
80286 processors and 80287 co-processors each with 512 KB memory. No dedi-
cated communication processors were present, and the communication facilities
were Ethernet connections implying a large start-up cost on any communication.

Both algorithms were of the distributed type, where the pool of live sub-
problems is distributed over all processors, and as strategy for distributing the
workload we used a combined “on demand”/”on overload” strategy. The “on
overload” strategy is based on the idea that if a processor has more than a given
threshold of live subproblems, a number of these are sent to neighbouring pro-
cessors. However, care must be take to ensure that the system is not floated with
communication and that flow of subproblems between processors takes place dur-
ing the entire solution process. The scheme is illustrated in Figure 10.

Regarding termination, the algorithm of Dijkstra et. al. [6] was used. The
selection strategy for next subproblem were BeFs for the RH-algorithm and DFS
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No. of proc. 4 8 16 32
CT time (sec) 1964 805 421 294

proc. util. (%) 97 96 93 93
no. of bound calc. 449123 360791 368923 522817

RH time (sec) 1533 1457 1252 1219
proc. util. (%) 89 76 61 42
no. of bound calc. 377 681 990 1498

Table 1: Comparison between the CT- and RH-algorithm on a 70 vertex problem
with respect to running times, processor utilization, and number of subproblems
solved.

for the CT-algorithm. The first feasible solution was generated by the Kernighan-
Lin heuristic, and its value was usually close to the optimal solution value.

For the CT-algorithm, results regarding processor utilization and relative
speed-up were promising. For large problems, a processor utilization near 100%
was observed, and linear speed-up close to the ideal were observed for problems
solvable also on a single processor. Finally we observed that the best speed-up
was observed for problems with long running times. The RH-algorithm behaved
differently - for small to medium size problems, the algorithm was clearly inferior
to the CT-algorithm, both with respects to running time, relative speed-up and
processor utilization. Hence the tight bounds did not pay off for small problems
- they resulted idle processors and long running times.

We continued to larger problems expecting the problem to disappear, and
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CT-algorithm RH-algorithm
No. Vert. Cr. subpr. B. calc. Sec. Cr. subpr. B. calc. Sec.

30 103 234 1 4 91 49
40 441 803 2 11 150 114
50 2215 3251 5 15 453 278
60 6594 11759 18 8 419 531
70 56714 171840 188 26 1757 1143
80 526267 901139 931 19 2340 1315

100 2313868 5100293 8825 75 3664 3462
110 8469580 15203426 34754 44 3895 4311
120 – – – 47 4244 5756

Table 2: Number of critical subproblems and bound calculations as a function of
problem size.

Figure 11 and Table 1 shows the results for a 70-vertex problem for the CT- and
RH-algorithms. We found that the situation did by no means improve. For the
RH method it seemed impossible to use more than 4 processors. The explanation
was found in the number of critical subproblems generated, cf. Table 2. Here it
is obvious that using more processors for the RH-method just results in a lot of
superfluous subproblems being solved, which does not decrease the total solution
time.
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3.2 Solving the QAP in Parallel.

QAP is one of my latest parallel B&B experiences. The aim of the research was
in this case to solve the previously unsolved benchmark problem Nugent20 to
optimality using a combination of the most advanced bounding functions and
fast parallel hardware, as well as any other trick we could find and think of.

We used a MEIKO system consisting of 16 Intel i860 processors each with 16
MB of internal memory. Each processor has a peak performance of 30 MIPS when
doing integer calculation giving an overall peak performance of approximately 500
MIPS for the complete system. The performance of each single i860 processor
almost matches the performance of the much more powerful Cray 2 on integer
calculations, indicating that the system is very powerful.

The processors each have two Inmos T800 transputers as communication pro-
cessors. Each transputer has 4 communication channels each with bandwidth
1.4 Mb/second and start-up latency 340 µs. The connections are software pro-
grammable, and the software supports point-to-point communication between
any pair of processors. Both synchronous and asynchronous communication are
possible, and also both blocking and non-blocking communication exist.

The basic framework for testing bounding functions was a distributed B&B al-
gorithm with the processors organized as a ring. Workload distribution was kept
simple and based on local synchronization. Each processor in the ring commu-
nicates with each of its neighbours at certain intervals. At each communication
the processors exchange information on the respective sizes of subproblem pools,
and based here-on, subproblems are sent between the processors. The speed-up
obtained with this scheme was 13.7 for a moderately sized problem with a sequen-
tial running time of 1482 seconds and a parallel running time with 16 processors
of 108 seconds.

The selection strategy used was a kind of breadth first search. The feasibility
hereof is intimately related to the use of a very good heuristic to generate the
incumbent. We used simulated annealing, and as reported in [5], spending less
than one percent of the total running time in the heuristic enabled us to start the
parallel solution with the optimal solution as the incumbent. Hence only critical
subproblems were solved. Regarding termination detection, a tailored algorithm
were used for this purpose.

The main results of the research are indicated in Table 3. We managed to
solve previously unsolved problems, and for problems solved by other researchers,
the results clearly indicated the value of choosing an appropriate parallel system
for the algorithm in question.

To get an indication of the efficiency of so-called static workload distribution
in our application, an algorithm with static workload distribution was also tested.
The results appear in Table 4. The subproblems distributed to each processor
were generated using BeFS sequential B&B until the pool of live subproblems
were sufficiently large that each processors could get the required number of
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Mautor & Roucairol Fac. br. w. symmetry
Problem No. nodes. Time (s) No. nodes. Time (s)
Nugent 15 97286 121 105773 10
Nugent 16.2 735353 969 320556 34
Nugent 17 – – 24763611 2936
Nugent 18 – – 114948381 14777
Nugent 20 – – 360148026 57963
Elshafei 19 575 1.4 471 0.5
Armour & Buffa 20 531997 1189 504452 111

Table 3: Result obtained by the present authors in solving large standard bench-
mark QAPs. Results obtained by Mautor and Roucairol is included for compar-
ison.

Problem Dynamic dist. Init. subpr. per proc. Static dist.
Nugent 8 0.040 1 0.026
Nugent 10 0.079 1 0.060
Nugent 12 0.328 6 0.381
Nugent 14 12.792 24 13.112
Nugent 15 10.510 41 11.746
Nugent 16 35.293 66 38.925

Table 4: Result obtained when solving standard benchmark QAPs using static
workload distribution. Results obtained with dynamic distribution are included
for comparison.

subproblems. Hence all processors receive equally promising subproblems. The
optimal number of subproblems pr. processors were determined experimentally
and equals roughly (p − 8)4/100, where p is the number of processors.

4 Ideas and Pitfalls for B&B users.

Rather than giving a conclusion, I will in the following try to equip new users of
B&B - both sequential and parallel - with a checklist corresponding to my own
experiences. Some of the points of the list have already been mentioned in the
preceding sections, while some are new.
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4.1 Points for sequential B&B

• The importance of finding a good initial incumbent cannot be overesti-
mated, and the time used for finding such one is often only few percentages
of the total running time of the algorithm.

• In case an initial solution very close to the optimum is expected to be
known, the choice of node selection strategy and processing strategy makes
little difference.

• With a difference of more than few percent between the value of the ini-
tial solution and the optimum the theoretically superior BeFS B&B shows
inferior performance compared to both lazy and eager DFS B&B. This is
in particular true if the pure B&B scheme is supplemented with problem
specific efficiency enhancing test for e.g. supplementary exclusion of sub-
spaces, and if the branching performed depends on the value of the current
best solution.

4.2 Points for parallel B&B.

First two points which may be said to be general for parallel computing:

• Do not use parallel processing if the problem is too easy - it is not worthwhile
the effort. Usually, small speed-up results or even speed-up anomalies with
speed-up less than 1.

• Choose the right hardware for your problem (or problem for your hardware,
if you are a basic researchers). Trying to beat the best result of others for
continuous problems requiring floating point vector calculations using a
parallel system best at integers does not make sense.

Regarding parallel B&B, beware of the following major points:

• Centralized control is only feasible in systems with a rather limited number
of processors. If a large number of processors are to be used, either total
distribution or a combined design strategy should be used.

• If the problem in question has a bound calculation function providing strong
bounds, then the number of live subproblems at any time might be small.
Then only a few of the processors of a parallel system can be kept busy with
useful work at the same time. Here it may be necessary to parallelize also
the individual bound calculation to be able to exploit additional processors.
This is usually much more difficult indicated by the fact the problem of
solving the optimization problem providing the bound is often P-complete,
cf. e.g. [15], where parallel algorithms for the assignment problem are
investigated.
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• If on the other hand the bound calculation gives rise to large search trees
in the sequential case, parallel B&B will most likely be a very good so-
lution method. Here static workload distribution may lead to an easily
programmable and efficient algorithm if the system used is homogeneous.

• When using dynamic workload distribution, the time spent on program-
ming, testing, and tuning sophisticated methods may not pay off well. Of-
ten good results are possible with relatively simple schemes.

• When consulting the literature, be careful when checking test results. A
speed-up of 3.75 on a system with 4 processors may at first glance seem
convincing, but on the other hand, if almost ideal speed-up cannot be ob-
tained with so few processors, the algorithm will most likely be in severe
troubles when the number of processors is increased.
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Exercises

(1) Finish the solution of the biking tourist’s problem on Bornholm.

(2) Give an example showing that the branching rule illustrated in Figure 9 may
produce nodes in the search tree with non-disjoint sets of feasible solutions.
Devise a branching rule, which ensures that all subspaces generated are
disjoint.

(3) The asymmetric Travelling Salesman problem is defined exactly as the sym-
metric problem except that the distance matrix is allowed to be asymmetric.
Give a mathematical formulation of the problem.

(4) Devise a B&B algorithm for the asymmetric TSP. Since the symmetric
TSP is a special case of the asymmetric TSP, this may also be used to solve
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symmetric TSP problems. Solve the biking tourist’s problem using your
algorithm.

(5) Consider the GPP as described in Example 1. By including the term

λ (
∑
v∈V

xv − |V |/2)

in the objective function, a relaxed unconstrained problem with modified
objective function results for any λ. Prove that the new objective is less
than or equal to the original on the set of feasible solutions for any λ.
Formulate the problem of finding the optimal value of λ as an optimization
problem.

(6) A node in a B&B search tree is called semi-critical if the corresponding
bound value is less than or equal to the optimal solution of the problem.
Prove that if the number of semi-critical nodes in the search tree correspond-
ing to a B&B algorithm for a given problem is polynomially bounded, then
the problem belongs to P.

Prove that this holds also with the weaker condition that the number of
critical nodes is polynomially bounded.

(7) Consider again the QAP as described in Example 3. The simplest bound
calculation scheme is described in Section 2.1. A more advanced, though
still simple, scheme is the following:

Consider now partial solution in which m of the facilities has been assigned
to m of the locations. The total cost of any feasible solution in the subspace
determined by a partial solution consists of three terms: costs for pairs
of assigned facilities, costs for pairs consisting of one assigned and one
unassigned facility, and costs for pairs of two unassigned facilities. The first
term can be calculated exactly. Bounds for each of the two other terms
can be found based on the fact that a lower bound for a scalar product
(a1, ..., ap) · (bπ(1), ..., bπ(p)), where a and b are given vectors of dimension p
and π is a permutation of {1, ..., p}, is obtained by multiplying the largest
element in a with the smallest elements in b, the next-largest in a with the
next-smallest in b etc.

For each assigned facility, the flows to unassigned facilities are ordered
decreasingly and the distances from the location of the facility to the re-
maining free locations are ordered increasingly. The scalar product is now a
lower bound for the communication cost from the facility to the remaining
unassigned facilities.
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The total transportation cost between unassigned facilities can be bounded
in a similar fashion.

(a)

Consider the instance given in Figure 6. Find the optimal solution to the
instance using the bounding method described above.

(b)

Consider now the QAP, where the distances between locations are given as
the rectangular distances in the following grid:

1 2 3

4 5 6

The flows between pairs of facilities are given by

F =




0 20 0 15 0 1
20 0 20 0 30 2
0 20 0 2 0 10
15 0 2 0 15 2
0 30 0 15 0 30
1 2 10 2 30 0




Solve the problem using B&B with the bounding function described above,
the branching strategy described in text, and DFS as search strategy.

To generate a first incumbent, any feasible solution can be used. Try prior
to the B&B execution to identify a good feasible solution. A solution with
value 314 exists.
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