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Basic concepts - LP I

We consider an LP-problem LP on standard form:

max cx

Ax = b

x ∈ Rn
+

Stated in detail:

max z = c1x1 + c2x2 + ... + cnxn

a11x1 + a12x2 + ... + a1nxn = b1

a21x1 + a22x2 + ... + a2nxn = b2

.

.

.

am1x1 + am2x2 + ... + amnxn = bm

x ≥ 0 , i = 1 , ... n

All problems can be transformed to this form.
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Basic concepts - LP II

• A solution to LP satisfies Ax = b.

• A feasible solution to LP satisfies Ax = b ∧ x ≥ 0.

• An optimal solution to LP, x∗ is a feasible solution
satisfying that for any other feasible solution x

cx∗ ≥ cx

• A basis for A is a set of m linearly independent
columns from A.

• The basic solution corresponding to the basis

B = A:B = {Aj1, ..., Ajm}
is the solution obtained from Ax = b by setting
xj = 0 , j /∈ {j1, ..., jm}. This is unique.

• A basic solution x̃ to LP is a solution, for which a
basis B exists such that x̃ is the basic solution
corresponding to B.
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Basic concepts - LP III

Consider now the basis

B = {Aj1, ..., Ajm}

The variables xj1 , ..., xjm are called basic variables, the
other variables ( xj = 0 , j /∈ {j1, ..., jm} are non-basic
variables.

The basic solution corresponding to B is found by

1. set all non-basic variables to 0 in Ax = b.

2. solve the “remaining system:

Bx = b ⇔ x = B−1b

3. value ? - insert !
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Solving LP-problems - Algebra I.

Consider the problem

max cx

Ax = b

x ≥ 0

Suppose that we have a basis B, a partitioning of A in a
basis-part and a non-basis part A = (B N), and a
corresponding partitioning of the vector of variables x into
(xB xN ). The basic solution corresponding to B is
algebraically found as follows::

max cx

Ax = b

x ≥ 0

7→

max cBxB + cNxN

BxB + NxN = b

xB , xN ≥ 0

7→
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Solving LP-problems - Algebra II.

Left-multiply with B−1 and move terms to the right:

max cBxB + cNxN

IxB + B−1NxN = B−1b 7→
xB, xN ≥ 0

max cBxB + cNxN

xB = B−1b − B−1NxN 7→
xB , xN ≥ 0

Insert the expression for xB into the objective fctn:

max cB(B−1b − B−1NxN ) + cNxN

xB = B−1b − B−1NxN 7→
xB , xN ≥ 0

Collect terms:

max 0xB + (cN − cBB−1N)xN + cBB−1b

IxB + B−1NxN = B−1b

xB , xN ≥ 0

The j’th reduced cost: cj = cj − (cBB−1N)j .

What is the contents of the Simplex tableau ?
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Solving LP-problems - Algebra II.
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Solving an LP - I

Consider the problem

max 7p + 11q

1 ≤ p ≤ 8

1 ≤ q ≤ 3.5

2p − q ≥ 0

p + q ≤ 9

p, q ≥ 0

Transform:
x1 = p − 1, x2 = q − 1 ⇔ p = x1 + 1, q = x2 + 1

max 7x1 + 11x2 + 18

0 ≤ x1 ≤ 7

0 ≤ x2 ≤ 2.5

2x1 − x2 ≥ −1

x1 + x2 ≤ 7

x1, x2 ≥ −1
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Solving an LP - II

In standard form:

max 7x1 + 11x2 (+18) NB!

−2x1 + x2 + x3 = 1

x1 + x2 + x4 = 7

x2 + +x5 = 2.5

x1, x2, x3, x4, x5 ≥ 0

The variables x3, x4, x5 are called slack variables and are
introduced to obtain a system in standard form.
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Solving an LP - III

Canonical Simplex tableau wrt. the basis {3,4,5}:

x1 x2 x3 x4 x5 0

Red. Costs 7 11 0 0 0 0

x3 -2 1 1 0 0 1

x4 1 1 0 1 0 7

x5 0 1 0 0 1 2.5

A

x2 <= 2.5

B

C D

x2 >= 0

x1 >= 0

−2 x1 + x2 <= 1

x1 + x2 <= 7

The basic solution: (0,0,1,7,2.5). Value: 0 (+18).

Optimal: No - increasing x1 or x2 increases the objecctive
function. Interplay with x3, x4, x5 ?
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Solving an LP - IV

A

x2 <= 2.5

B

C D

x2 >= 0

x1 >= 0

−2 x1 + x2 <= 1

x1 + x2 <= 7

Fix x1 to 0. The the equation system is

max 11x2

x3 = 1 − x2

x4 = 7 − x2

x5 = 2.5 − x2

x2, ..., x5 ≥ 0

x3, x4, x5 all decrease when x2 increases.

Increase x2 as much as possible. Bounds: all variables must
stay non-negative. x3 sets the bound - x2 can be
increased to 1. Find Simplex tableau wrt. the basis {2,4,5}.
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Solving an LP - V

A

x2 <= 2.5

B

C D

x2 >= 0

x1 >= 0

−2 x1 + x2 <= 1

x1 + x2 <= 7

Red. Costs 7 11 0 0 0 0

x3 -2 1 1 0 0 1

x4 1 1 0 1 0 7

x5 0 1 0 0 1 2.5

Red. Costs 29 0 -11 0 0 -11

x2 -2 1 1 0 0 1

x4 3 0 -1 1 0 6

x5 2 0 -1 0 1 1.5

Optimal solution ? No - increase x1
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Solving an LP - VI

A

x2 <= 2.5

B

C D

x2 >= 0

x1 >= 0

−2 x1 + x2 <= 1

x1 + x2 <= 7

Red. Costs 29 0 -11 0 0 -11

x2 -2 1 1 0 0 1

x4 3 0 -1 1 0 6

x5 2 0 -1 0 1 1.5

Red. Costs 0 0 7/2 0 -29/2 -131/4

x3 0 1 0 0 1 5/2

x4 0 0 1/2 1 -3/2 15/4

x1 1 0 -1/2 0 1/2 3/4

Optimal solution ? No - increase x3
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Solving an LP - VII

A

x2 <= 2.5

B

C D

x2 >= 0

x1 >= 0

−2 x1 + x2 <= 1

x1 + x2 <= 7

Red. Costs 0 0 7/2 0 -29/2 -131/4

x3 0 1 0 0 1 5/2

x4 0 0 1/2 1 -3/2 15/4

x1 1 0 -1/2 0 1/2 3/4

Red. Costs 0 0 0 -7 -4 -59

x2 0 1 0 0 1 5/2

x3 0 0 1 2 -3 15/2

x1 1 0 0 1 -1 9/2

Optimal solution ? Yes ! No variables can be increased
without decreasing the objective function.
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The Simplex Algorithm for LP I

The procedure just completed is called the Simplex
Algorithm and can be described as follows:

Input: A maximization-LP-problem in canonical form with
respect to a basis, i.e. such that the columns of the basic
variables are unit vectors, and that each basic variable has 0
as coefficient in the objective function.

• optimal := unbounded := “no” ;

• while optimal = “no” and unbounded = “no” do

– if cj ≤ 0 for all j then optimal := “yes” else

– choose s with cs > 0 (often largest positive); *)
j is pivot column

– if ais ≤ 0 for all i then unbounded := “yes” else
∗ find q = mini:ais>0 {bi/ais} = br/ars

r is pivot row, q is the increase in objective
function value from the current basic solution to
new (to be constructed).

∗ pivot on ars

*): If the problem in question is a minimization problem,
then “cj > 0 (often largest positive)” is to be “cj < 0 (often
smallest negative)”.

Pivot ? - Exact description ?
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The Simplex Algorithm for LP - pivoting

The Pivot operation on ars:

1. Divide row r with ars to produce tableau with a 1 in
row r, column s

arj := arj/ars, j ∈ {1, ..., n}
2. For each other row p (including the “objective function

row”), subtract a multiplum of row r such that aps

becomes 0 in the new tableau:

• apj := apj − (arj/ars) · aps j ∈ {1, ..., n}
• bp := bp − (br/ars) · aps
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Removing a constraint

A

x2 <= 2.5

B

C D

x2 >= 0

x1 >= 0

−2 x1 + x2 <= 1

x1 + x2 <= 7

Red. Costs 7 11 0 0 0

x3 -2 1 1 0 1

x4 0 1 0 1 2.5

Red. Costs 29 0 -11 0 -11

x2 -2 1 1 0 1

x4 2 0 -1 1 1.5

Red. Costs 0 0 7/2 0 -131/4

x2 0 1 0 0 5/2

x1 1 0 -1/2 0 3/4

The problem is unbounded - x3 can be increased infinitely,
increasing the objective function all the way ...
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Optimality argument I

• The Simplex tableau for the basis {1,2,3} is just
another representation of the equations and
inequalities of the original problem.

• For any feasible x : x ∈ {x|Ax = b , x ≥ 0} it holds that

cx = cx + cBB−1b

where c are the reduced costs corresponding to the
basis B.

Example:

Red. Costs c1 c2 c3 c4 c5 - cBB−1b

A 7 11 0 0 0 0

C 0 0 7/2 0 -29/2 -131/4

D 0 0 0 -7 -4 -59

x1, ..., x5 A-vers. D-vers.

(0,0,1,7,5/2) 0 7 · −7 + 5/2 · −4 + 59

(0,1,0,6,3/2) 11 · 1 6 · −7 + 3/2 · −4 + 59

(9/2,5/2,15/2,0,0) 7 · 9/2 + 11 · 5/2 59
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Optimality argument II

• If for the basis B it holds that c ≤ 0 , then B is
optimal because:

(1∗) cx = cx + cBB−1b = cNxN + cBB−1b

for all x ∈ S (since cB = 0) and

(2∗) cNxN ≤ 0 since cN ≤ 0, x ≥ 0

• The basic solution for B has all non-basic variables
equal 0 and hence have the value

cBB−1b

which by (1*) and (2*) is the best possible since

(1∗)∧(2∗) ⇒ cx = cNxN +cBB−1b ≤ 0+cBB−1b , x ∈ S

Convergence ?

Can be shown easily if all basic solutions are different (the
problem is non-degenerate) - otherwise a mechanism to
prevent generating the same basic solution twice during the
iterations is necessary.
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Structure of pairs of LP-problems.

LP-problems come in “pairs” – an LP-problem and its dual.
The structure of such pairs are illustrated below:

A b

c

y

x

(DP)

max      cx

             x >= 0

min      yb

            yA  >= c

            y  >= 0

             Ax  =<  b(P)

The Strong Duality Theorem: If (P) and (DP) both
have feasible solutions, then both have optimal solutions
x resp. y, and the optimum values are equal: cx = yb
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Pairs of primal and Dual LPs.

The connection between the structure of an LP-problem
and its dual can be described through the following table.
The dual of the dual to a given problem is the problem
itself. Equivalent forms of a primal problem have equivalent
dual problems.

Primal: Min Dual: Max

a) i’th constraint ≥ i’th variable ≥ 0

b) ” ≤ ” ≤ 0

c) ” = ” free

d) j’th variable ≥ 0 j’th constraint ≤
e) ” ≤ 0 ” ≥
d) ” free ” =

Primal: Max Dual: Min

a) i’th constraint ≥ i’te variable ≤ 0

b) ” ≤ ” ≥ 0

c) ” = ” free

d) j’th variable ≥ 0 j’th constraint ≥
e) ” ≤ 0 ” ≤
d) ” free ” =
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Optimality conditions.

The Complementary Slackness Theorem is concerned
with necessary and sufficient conditions for optimality of
feasible solutions x and y to a pair of dual LP-problems:

We consider a pair of dual LP-problems, P and DP:

(P) (DP)

max cx min yb

Ax ≤ b yA ≥ c

x ≥ 0 y ≥ 0

and a pair x, y of feasible solutions to P resp. DP. x and y

are optimal solution to P resp. DP if and only if:

(b − Ax) · y = 0 ∧ (yA − c) · x = 0

The conditions spelled out are:

∀ i : yi(bi − Ai·x) = 0

∀ j : (yA·j − cj)xj = 0
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Optimality conditions - revised.

We consider an LP-problem, P:

max cx

A1x ≥ b1

A2x = b2

x free

A given xo is an optimal solution to P if and only if:
1) xo is a feasible solution to P , and
2) there exists a vector (y1, y2) satisfying the following:

(y1, y2)


 A1

A2


 = c (1)

y1(b1 − A1x
o) = 0 (2)

y2(b2 − A2x
o) = 0 (3)

((y1, y2)


 A1

A2


 − c)xo = 0 (4)

y1 ≤ 0 (5)

(1)+(5): (y1, y2) is feasible for the dual problem of P.
(2)+(3)+(4): the compl. slackness thm. holds for
xo, (y1, y2). (3) holds due to the feasibility of xo, and (4)
holds due to (1). Thus (3) and (4) are superfluous.
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Optimality conditions - Geometry I

We consider now an LP-problem, P:

max cx

Ax ≥ b

x free

A given xo is an optimal solution to P if and only if:
1) xo is a feasible solution to P, and
2) there exists a vector (y) satisfying the following:

yA = c (1)

y(b − Axo) = 0 (2)

y ≤ 0 (3)

What is the geometric interpretation of (1), (2), and (3) ?

The vector c is the gradient of the objective function cx,
i.e. that direction for a move in Rn, for which the objective
function increases most rapidly.
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Optimality conditions - Geometry II

The feasible region S for P, {x|Ax ≥ b}, is defined by the
functions
a11x1+...+a1nxn−b1 ≥ 0 , ... , am1x1+...+amnxn−bm ≥ 0.
The gradients (a11 , ... , a1n) , ... , (am1 , ... , amn) for
these functions point into S. Condition (1) and (3) state,
that at the optimal point of S - an extreme point, Q - the
gradient of the objective function must be a non-positive
linear combination of the gradients of the constraints.
For Q (which corresponds to a basic feasible solution), (2)
states that the linear combination must be constructed
using only the gradients of those constraints, which are
binding at Q:

2 x1 − x2 + 1 >= 0

A

B

C D

x2 >= 0

x1 >= 0

−x2 + 2.5 >= 0

−x1 − x2 + 7 >= 0
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