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Stated in detail:

o

Basic concepts - LP II

We consider an LP-problem LP on standard form:

max cr

Ax =b

maxr z = Cc1x1 + Caxo + ... +cCcpxy
a11T1 -+ a12T2 =+ ...+ A1y — bl

211 + 299 + ... + A9, T, = bz

Am1T1 + AmoaXo + ... + QG Ty, = by

x>0, 1 =1,..

All problems can be transformed to this form.
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Basic concepts - LP III

e A solution to LP satisfies Ax = b.

A feasible solution to LP satisfies Az =b AN x> 0.

e An optimal solution to LP, z* is a feasible solution
satisfying that for any other feasible solution =

cx™ > cx

e A basis for A is a set of m linearly independent

columns from A.
e The basic solution corresponding to the basis
B=Ap={A1,..,Ajm}
is the solution obtained from Az = b by setting
z; =0,7¢ {j1,..., jm}. This is unique.

e A basic solution x to LP is a solution, for which a
basis B exists such that z is the basic solution

corresponding to B.
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Basic concepts - LP IIII

Consider now the basis
B = {Aj17 cees Ajm}

The variables z;,,...,z;, are called basic variables, the
other variables (z; =0 ,j ¢ {ji1,..., jm} are non-basic

variables.

The basic solution corresponding to B is found by
1. set all non-basic variables to 0 in Az = b.

2. solve the “remaining system:

Br=bs x=DB'

3. value 7 - insert !
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Solving LP-problems - Algebra I. I

Consider the problem

max  Cx
Ar = b
xr > 0

Suppose that we have a basis B, a partitioning of A in a
basis-part and a non-basis part A = (B N), and a
corresponding partitioning of the vector of variables x into
(xp xn). The basic solution corresponding to B is

algebraically found as follows::

max CI
Ar = b —
zr > 0

max cpxrp -+ CNIN
Bxg+ Nxy = b =

rxp, tx = 0
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/ Solving LP-problems - Algebra II. I \

Left-multiply with B~! and move terms to the right:

max CBXB +CNIN
ICUB—I—B_lNZEN = B % —

rxp, tx = 0

max cpxrp -+ CNIN
rgp = B_lb—B_lNZUN —

By, TN Z 0

Insert the expression for xp into the objective fctn:

max CB(B_lb —B_lNZUN) + CNIN
TRB = B '%W—B 'Nxy
B, TN > 0

Collect terms:

max O:I:B—l—(cN—cBB_lN)a:N + cgB~ '
I:UB—l—B_leN = B~ 1

rp, tny = 0

The j’th reduced cost: |¢; =¢; — (cg B™'N), |

\VV hat is the contents of the Simplex tableau 7 /
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Solving LP-problems - Algebra II. I
max cX= G % + § X
(B N)x =b
Xx>=0
Cg N 0
-1 -1
max cx =(¢ - g B N)x e;B b
-1 -1
Xg = B b-B NN -1
Xy L X, >= 0 —cBB b
0 - 6B N .
10 0
01
1
-1 -1
B B b
0 01
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Solving an LP - II

Consider the problem

max Tp+ 1lq
I<p<8

1 <qg<35
2p—q=>0
p+qg<9
p,g =0

Transform:

r1=p—1, xo=q—1p=x1+1, g=x2+1

max Tx1+ 1lxzs + 18
0< 1 <7
0< 29 <25

201 —x9 > —1
1+ a2 <7

X1,T2 Z —1
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Solving an LP - III

In standard form:

max Txy+ 1lze  (+18) NB!

—2x1 + X2 + T3 =1
1 + T2 + x4 =7
To + ‘x5 =25

L1,X2,x3, T4, L5 >0

The variables x3, x4, x5 are called slack variables and are
introduced to obtain a system in standard form.
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Solving an LP - IIII
Canonical Simplex tableau wrt. the basis {3,4,5}:
r1 Lo T3 T4 T 0
Red. Costs | 7 11 0O 0 O 0
T3 -2 1 1 0 0 1
Iy 1 1 0 1 0 7
x5 o 1 0 0 1125
Ax1>=0
-2x1+x2<= 1\
X2<=25
C D
B X1+x2<=7
x2>=0
P : N
A
The basic solution: (0,0,1,7,2.5). Value: 0 (+18).
Optimal: No - increasing x; or xo increases the objecctive
function. Interplay with x3, x4, x5 7
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/ Solving an LP - IVI

Ax1>:0

-2x1+x2<=1
X2<=2.5

X1+x2<=7

x2>=0

oD
\V

\>

A

Fix x1 to 0. The the equation system is

maxr 1lxo
r3=1— a9
Ty =17 — o
Ty = 2.5 — Iy

L2y ..., Ty > 0

xr3, x4, Ts all decrease when x5 increases.

Increase x5 as much as possible. Bounds: all variables must
stay non-negative. xs sets the bound - x> can be

\increased to 1. Find Simplex tableau wrt. the basis {27475}J
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Solving an LP - V I
Ax1>=0
-2 X1+ x2<= 1\
X2 <=2.5
C D
x1+x2<=7
x2>=0
I =
Red. Costs | 7 11 0 O O 0
3 -2 1 1 0 0 1
Ta 1 1 0 1 0 7
Tr 0 1 0 0 1125
Red. Costs | 29 0 -11 0 0| -11
To -2 1 1 0 0 1
Ta 3 0 -1 1 0 6
Ts 2 0 -1 0 1] 1.5

\Optimal solution ? No - increase x /
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Solving an LP - VII

\Optimal solution 7 No - increase x3

Ax1>=0
-2 X1+ x2 <:1\
X2 <=2.5
C D
B x1+x2<=7
| x2>=0
] < =
A
Red. Costs | 29 0 -11 0 0| -11
To -2 1 1 0 0 1
Ta 3 0 -1 1 0 6
Ts 2 0 -1 0 1] 1.5
Red. Costs | O 0 7/2 0 -29/2 | -131/4
3 0 1 0O O 1 5/2
T4 0o 0 1/2 1 -3/2 15/4
T1 1 0 -1/2 0 1/2 3/4

\
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Solving an LP - VIII
Ax1>=0
-2 X1+ x2<= \
X2<=25
C D
B X1+x2<=7
| x2>=0
1 S =
A
Red. Costs | O 0 7/2 0 -29/2 | -131/4
3 0 1 0 0 1 5/2
T4 o 0 1/2 1 -3/2 15/4
1 1 0 -1/2 0 1/2 3/4
Red. Costs | O 0 0 -7 -4 -59
X9 0O 1 0 0 1 5/2
xr3 o 0 1 2 -3]15/2
1 1 0 0 1 -1 9/2
Optimal solution ? Yes ! No variables can be increased

Qvithout decreasing the objective function. /
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/ The Simplex Algorithm for LP II \

The procedure just completed is called the Simplex

Algorithm and can be described as follows:

Input: A maximization-LP-problem in canonical form with
respect to a basis, i.e. such that the columns of the basic
variables are unit vectors, and that each basic variable has 0
as coefficient in the objective function.

e optimal := unbounded := “no” ;

e while optimal = “no” and unbounded = “no” do
— if ¢; <0 for all j then optimal := “yes” else

— choose s with ¢; > 0 (often largest positive); *)
j is pivot column

— if a@;5 < 0 for all ¢ then unbounded := “yes” else

« find ¢ = mingazso {bi/ais} = br/ars
r is pivot row, ¢ is the increase in objective
function value from the current basic solution to
new (to be constructed).

*x Ppivot on a4

*): If the problem in question is a minimization problem,
then “c; > 0 (often largest positive)” is to be “c; < 0 (often
smallest negative)”.

\Pivot ? - Exact description 7 /
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The Simplex Algorithm for LP - pivotingl

The Pivot operation on a,:

1. Divide row r with a,s to produce tableau with a 1 in

row 7, column s

Qrj = Gr;/Crs, J€{1,...,n}

2. For each other row p (including the “objective function
row” ), subtract a multiplum of row r such that @,

becomes 0 in the new tableau:

® Uy i=0p; — (Qr;/Crs) - Cps j€{1,....;n}

o by = by — (b /)  Tps

\_ /
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/ Removing a constraint. \

x1>=0

-2x1+x2<=1
X2 <=25

C D
B X1+x2<=7

I x2>= 0 _
A

Red. Costs | 7 11 0 O 0
T3 2 1 1 0 1
x4 0 1 0 1 2.5
Red. Costs | 29 0 -11 O -11
T2 -2 1 1 0 1
T4 2 0 -1 1 1.5
Red. Costs | 0 0 7/2 0 |-131/4
T2 0 1 0 0 5/2
T 1 0 -1/2 0 3/4

The problem is unbounded - z3 can be increased infinitely,

\increasing the objective function all the way ... /
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Optimality argument II

e The Simplex tableau for the basis {1,2,3} is just
another representation of the equations and

inequalities of the original problem.

e For any feasible x : x € {x|Ax = b ,z > 0} it holds that

cr =¢xr +cgB b

where ¢ are the reduced costs corresponding to the

basis B.
Example:

Red. Costs | ¢1 ¢ C3 C4 G | - cgB71h

A 7 11 0 O 0 0

C 0 0o 7/2 0 -29/2 -131/4

D 0 0 0 -7 -4 -959
T1,..., T5 A-vers. D-vers.
(0,0,1,7,5/2) 0|7 —7+5/2-—4+ 59
(0,1,0,6,3/2) 11-1 | 6-—-7+3/2-—4 + 59
(9/2,5/2,15/2,0,0) | 7-9/2 + 11-5/2 59
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Optimality argument III

e If for the basis B it holds that |¢ < 0|, then B is

optimal because:

(1x) cx =cx+ cgB b =¢nan +cgB b
for all x € S (since ¢g = 0) and
(2%x) enzny <0 since ey <0, x>0

e The basic solution for B has all non-basic variables

equal 0 and hence have the value
CBB_lb
which by (1*) and (2*) is the best possible since

(1¥)A(2%) = cx = eyon+cgB b < 0+cgB~'b ;o € S

Convergence 7

Can be shown easily if all basic solutions are different (the
problem is non-degenerate) - otherwise a mechanism to
prevent generating the same basic solution twice during the

iterations is necessary.
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/ Structure of pairs of LP-problems.I \

LP-problems come in “pairs” — an LP-problem and its dual.

The structure of such pairs are illustrated below:

max  cX
(P) Ax =< b
Xx>=0
C X
A b
y
min  yb
(DP) yA >=C
y >=0

The Strong Duality Theorem: If (P) and (DP) both
have feasible solutions, then both have optimal solutions

T resp. Y, and the optimum values are equal: | cX = yb
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/ Pairs of primal and Dual LPS.I

The connection between the structure of an LP-problem
and its dual can be described through the following table.
The dual of the dual to a given problem is the problem

dual problems.

Primal: Min Dual: Max

a) i’th constraint > | i’th variable > ()
b) 7 < 7 <0
c) 7 = 7 free

d) j’th variable > 0 | j’th constraint <

e) 7 <0 7 >
d) 7 free 7 =
Primal: Max Dual: Min

a) i’th constraint > i’te variable <0
b) 7 < 7 >0
c) 7 = 7 free

d) j’th variable > 0 | j’th constraint >
) 29 < O 29

) 2 free 7

o
IA

o,

\

itself. Equivalent forms of a primal problem have equivalent

20
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Optimality conditions. I

The Complementary Slackness Theorem is concerned
with necessary and sufficient conditions for optimality of
feasible solutions x and y to a pair of dual LP-problems:

We consider a pair of dual LP-problems, P and DP:

(P)

IMax CX
Ax <
X 2

and a pair T,y of feasible solutions to P resp. DP. T and i
are optimal solution to P resp. DP if and only if

(DP)

min yb
vyvA > ¢
y > 0

(b—AX) -y

=0 AN (FA—-¢c)-X=0

The conditions spelled out are:

Vi

Vo

(YA; —¢j)x; =0

/
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/ Optimality conditions - revised. I \

We consider an LP-problem, P:

max CX
Ax > b
Asx = by
x free

A given z° is an optimal solution to P if and only if
1) z° is a feasible solution to P , and
2) there exists a vector (y1,y2) satisfying the following:

ww [ ) = ¢
Y1,Y2 A, =
Y1 (bl — Alxo) = 0 (2)
y2(b2 — Agxo) = 0 (3)
Ay
((y1,2) —cjz® = 0 (4)
yi. < 0 (5)

(1)+(5): (y1,y2) is feasible for the dual problem of P.
(2)+(3)4(4): the compl. slackness thm. holds for
x°, (y1,y2). (3) holds due to the feasibility of x°, and (4)

\holds due to (1). Thus (3) and (4) are superfluous. /
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Optimality conditions - Geometry II

We consider now an LP-problem, P:

max  CX
Ax > b
x free

A given z° is an optimal solution to P if and only if:
1) z° is a feasible solution to P, and

2) there exists a vector (y) satisfying the following:

yA = ¢ (1)
y(b—Az°) = 0 (2)
y < 0 (3)

What is the geometric interpretation of (1), (2), and (3) ?

The vector c¢ is the gradient of the objective function cx,
i.e. that direction for a move in R™, for which the objective

function increases most rapidly.
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/ Optimality conditions - Geometry III \

The feasible region S for P, {z|Ax > b}, is defined by the

functions
a11$1+..o+a1nxn_b1 Z 0 9 eee a/mlxl—l_---—l_amnxn_bm 2 0.
The gradients (a11 , ..., @1n) 5 -+ 5 (Gm1 5 vy Gump) for

these functions point into S. Condition (1) and (3) state,
that at the optimal point of .S - an extreme point, () - the
gradient of the objective function must be a non-positive
linear combination of the gradients of the constraints.
For @@ (which corresponds to a basic feasible solution), (2)
states that the linear combination must be constructed
using only the gradients of those constraints, which are
binding at Q:

Ax1>:O

2x1 - x2+1>20 K

c i

y

x2>=0

Fan
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