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Abstract

Duality in LP is often introduced through the relation between LP problems mod-
eling different aspects of a planning problem. Though providing a good motivation
for the study of duality this approach does not support the general understanding of
the interplay between the primal and the dual problem with respect to the variables
and constraints.

This paper describes the multiplier approach to teaching duality: Replace the
primal LP-problemP with a relaxed problem by including in the objective function
the violation of each primal constraint multiplied by an associated multiplier. The
relaxed problem is trivial to solve, but the solution provides only a bound for the
solution of the primal problem. The new problem is hence to choose the multipliers
so that this bound is optimized. This is the dual problem ofP .

LP duality is described similarly in the work by A. M. Geoffrion on Lagrangean
Relaxation for Integer Programming. However, we suggest here that the approach is
used not only in the technical parts of a method for integer programming, but as a
general tool in teaching LP.
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1 Introduction

Duality is one of the most fundamental concepts in connection with linear programming
and provides the basis for better understanding of LP models and their results and for
algorithm construction in linear and in integer programming. Duality in LP is in most
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textbooks as e.g. [2, 7, 9] introduced using examples building upon the relationship be-
tween the primal and the dual problem seen from an economical perspective. The primal
problem may e.g. be a blending problem:

Determine the contents of each of a set of available ingredients (e.g. fruit or grain) in a
final blend. Each ingredient contains varying amounts of vitamins and minerals, and the
final blend has to satisfy certain requirements regarding the total contents of minerals and
vitamins. The costs of units of the ingredients are given, and the goal is to minimize the
unit cost of the blend.

The dual problem here turns out to be a problem of prices: What is the maximum price
one is willing to pay for “artificial” vitamins and minerals to substitute the natural ones in
the blend?

After such an introduction the general formulations and results are presented including
the statement and proof of the duality theorem:

Theorem 1 (Duality Theorem) If feasible solutions to both the primal and the dual prob-
lem in a pair of dual LP problems exist, then there is an optimum solution to both systems
and the optimal values are equal.

Also accompanying theorems on unboundedness and infeasibility, and the Complemen-
tary Slackness Theorem are presented in most textbooks.

While giving a good motivation for studying dual problems this approach has an obvious
shortcoming when it comes to explaining duality in general, i.e. in situations, where no
natural interpretation of the dual problem in terms of primal parameters exists.

General descriptions of duality are often handled by means of symmetrical dual forms
as introduced by von Neumann. Duality is introduced by stating that two LP-problems
are dual problemsby definition. The classical duality theorems are then introduced and
proved. The dual of a given LP-problem can then be found by transforming this to a
problem of one of the two symmetrical types and deriving it’s dual through the definition.
Though perfectly clear from a formal point of view this approach does not provide any
understanding the interplay between signs of variables in one problem and type of con-
straints in the dual problem. In [1], Appendix II, a presentation of general duality trying
to provide this understanding is given, but the presentation is rather complicated.

In the following another approach used by the author when reviewing duality in courses
on combinatorial optimization is suggested. The motivating idea is that of problem re-
laxation: If a problem is difficult to solve, then find a family of easy problems each
resembling the original one in the sense that the solution provides information in terms of
bounds on the solution of our original problem. Now find that problem among the easy
ones, which provides the strongest bounds.

In the LP case we relax the primal problem into one with only non-negativity constraints
by including in the objective function the violation of each primal constraint multiplied by
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Fruit type F1 F2 F3 F4
Preservative R 2 3 0 5
Preservative Q 3 0 2 4
Cost pr. ton 13 6 4 12

Table 1. Contents of R and Q and price for different types of fruit.

an associated multiplier. For each choice of multipliers respecting sign conditions derived
from the primal constraints, the optimal value of the relaxed problem is a lower bound (in
case of primal minimization) on the optimal primal value. The dual problem now turns
out to be the problem of maximizing this lower bound.

The advantages of this approach are 1) that the dual problem of any given LP problem
can be derived in a natural way without problem transformations and definitions 2) that
the primal/dual relationship between variables and constraints and the signs/types of these
becomes very clear for all pairs of primal/dual problems and 3) thatLagrangean Relax-
ation in integer programming now becomes a natural extension as described in [3, 4]. A
similar approach is sketched in [8, 5].

The reader is assumed to have a good knowledge of basic linear programming. Hence,
concepts as Simplex tableau, basic variables, reduced costs etc. will be used without
introduction. Also standard transformations between different forms of LP problems are
assumed to be known.

The paper is organized as follows: Section 2 contains an example of the approach sketched,
Section 3 presents the general formulation of duality through multipliers and the proof of
the Duality Theorem, and Section 4 discusses the pros and cons of the approach presented.
The main contribution of the paper is not theoretical but pedagogical: the derivation of
the dual of a given problem can be presented without problem transformations and defi-
nitions, which are hard to motivate to people with no prior knowledge of duality.

2 A blending example

The following example is adapted from [6].

The Pasta Basta company wants to evaluate an ecological production versus a traditional
one. One of their products, the Pasta Basta lasagne, has to contain certain preservatives,
R and Q, in order to ensure durability. Artificially produced counterparts R’ and Q’ are
usually used in the production - these are bought from a chemical company PresChem, but
are undesirable from the ecological point of view. R and Q can alternatively be extracted
from fresh fruit, and there are four types of fruit each with their particular content (number
of units) of R and Q in one ton of the fruit. These contents and the cost of buying the fruit
are specified in Table 1.
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Pasta Basta has a market corresponding to daily needs of 7 units of R and 2 units of Q. If
the complete production is based on ecologically produced preservatives, which types of
fruit and which amounts should be bought in order to supply the necessary preservatives
in the cheapest way ?

The problem is obviously an LP-problem:

(P )

min 13x1 +6x2 +4x3 +12x4

s.t. 2x1 +3x2 +5x4 = 7
3x1 +2x3 +4x4 = 2

x1, x2, x3, x4 ≥ 0

With x2 andx3 as initial basic variables the Simplex method solves the problem with the
tableau of Table 2 as result.

Natural questions when one knows one solution method for a given type of problem are:
Is there an easier way to solve such problems ? Which LP problems are trivial to solve ?
Regarding the latter, it is obvious that LP minimization problems with no constraints but
non-negativity ofx1, · · · , xn are trivial to solve:

min c1x1 + · · · + cnxn

s.t. x1, · · · , xn ≥ 0

If at least one cost coefficient is negative the value of the objective function is unbounded
from below (in the following termed “equal to−∞”) with the corresponding variable
unbounded (termed “equal to∞”) and all other variables equal to 0, otherwise it is 0 with
all variables equal to 0.

The blending problemP of 2 is not of the form just described. However, such a prob-
lem may easily be constructed fromP : Measure the violation of each of the original
constraints by the difference between the right-hand and the left-hand side:

7 − (2x1 + 3x2 + 5x4)
2 − (3x1 + 2x3 + 4x4)

x1 x2 x3 x4

Red. Costs 15/2 0 3 0 -15
x2 -7/12 1 -5/6 0 3/2
x4 3/4 0 1/2 1 1/2

Table 2. Optimal Simplex tableau for problem LP
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Multiply these by penalty factorsy1 andy2 and add them to the objective function:

(PR(y1, y2)) min
x1,···,x4≥0




13x1 + 6x2 + 4x3 + 12x4

+ y1(7 − 2x1 − 3x2 − 5x4)
+ y2(2 − 3x1 − 2x3 − 4x4)




We have now constructed a family of relaxed problems, one for each value ofy1, y2, which
are easy to solve. None of these seem to be the problem we actually want to solve, but
the solution of eachPR(y1, y2) gives some information regarding the solution ofP . It
is a lower bound for anyy1, y2, and the maximum of these lower bound turns out to be
equal to the optimal value ofP . The idea of replacing a difficult problem by an easier
one, for which the optimal solution provides a lower bound for the optimal solution of the
original problem, is also the key to understanding Branch-and-Bound methods in integer
programming.

Let opt(P ) and opt(PR(.)) denote the optimal values ofP andPR(.) resp. Now observe
the following points:

1. ∀y1, y2 ∈ R: opt(PR(y1, y2) ≤ opt(P )

2. maxy1,y2∈R (opt(PR(y1, y2))) ≤ opt(P )

1) states that opt(PR(y1, y2) is a lower bound for opt(P ) for any choice ofy1, y2 and
follows from the fact that for any set of values forx1, · · · , x4 satisfying the constraints of
P , the values ofP andPR are equal since the terms originating in the violation of the
constraints vanish. Hence opt(PR(y1, y2)) is found by minimizing over a set containing
all values of feasible solutions toP implying 1). Since 1) holds for all pairsy1, y2 it must
also hold for the pair giving the maximum value of opt(PR(.)), which is 2). In the next
section we will prove that

max
y1,y2∈R

(opt(PR(y1, y2))) = opt(P )

The best bound for our LP problemP is thus obtained by finding optimal multipliers for
the relaxed problem. We have here tacitly assumed thatP has an optimal solution, i.e. it
is neither infeasible nor unbounded - we return to that case in Section 3.

Turning back to the relaxed problem the claim was that it is easily solvable for anygiven
y1, y2 . We just collect terms to find the coefficients ofx1, · · · , x4 in PR(y1, y2)):

(PR(y1, y2)) min
x1,···,x4≥0




(13 −2y1 −3y2) x1

+ (6 −3y1 ) x2

+ (4 −2y2) x3

+ (12 −5y1 −4y2) x4

+ 7y1 +2y2



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Sincey1, y2 are fixed the term7y1 + 2y2 in the objective function is a constant. If any
coefficient of a variable is less than 0 the value ofPR is −∞. The lower bound for
opt(P ) provided by such a pair ofy-values is of no value. Hence, we concentrate ony-
values for which this does not happen. These pairs are exactly those assuring that each
coefficient forx1, · · · , x4 is non-negative:

(13 −2y1 −3y2) ≥ 0 ⇔ 2y1 +3y2 ≤ 13
(6 −3y1 ) ≥ 0 ⇔ 3y1 ≤ 6
(4 −2y2) ≥ 0 ⇔ 2y2 ≤ 4
(12 −5y1 −4y2) ≥ 0 ⇔ 5y1 +4y2 ≤ 12

If these constraints all hold the optimal solution toPR(y1, y2) hasx1, · · · , x4 all equal to
0 with a value of7y1 + 2y2 which, sincey1, y2 are finite, is larger than−∞. Since we
want to maximize the lower bound7y1 + 2y2 on the objective function value ofP , we
have to solve the following problem to find the optimal multipliers:

(DP )

max 7y1 +2y2

s.t. 2y1 +3y2 ≤ 13
3y1 ≤ 6

2y2 ≤ 4
5y1 +4y2 ≤ 12

y1, y2 ∈ R

The problemDP resulting from our reformulation is exactly the dual problem ofP . It is
again a linear programming problem, so nothing is gained with respect to ease of solution
- we have no reason to believe thatDP is any easier to solve thanP . However, the above
example indicates that linear programming problems appear in pairs defined on thesame
data with one being a minimization and the other a maximization problem, with variables
of one problem corresponding to constraints of the other, and with the type of constraints
determining the signs of the corresponding dual variables. Using the multiplier approach
we have derived the dual problemDP of our original problemP , and we have through 1)
and 2) proved the so-called Weak Duality Theorem - that opt(P ) is greater than or equal
to opt(DP ).

In the next section we will discuss the construction in general, the proof of the Duality
Theorem as stated in the introduction, and the question of unboundedness/infeasibility of
the primal problem. We end this section by derivingDP as frequently done in textbooks
on linear programming.

The company PresChem selling the artificially produced counterparts R’ and Q’ to Pasta
Basta at pricesr andq is considering to increase these as much as possible well knowing
that many consumers of Pasta Basta lasagne do not care about ecology but about prices.
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These customers want as cheap a product as possible, and Pasta Basta must also produce
a cheaper product to maintain its market share.

If the complete production of lasagne is based on P’ and Q’, the profit of PresChem is
7r + 2q. Of courser andq cannot be so large that it is cheaper for Pasta Basta to extract
the necessary amount of R and Q from fruit. For example, at the cost of 13, Pasta Basta
can extract 2 units of R and 3 units of Q from one ton of F1. Hence

2r + 3q ≤ 13

The other three types of fruit give rise to similar constraints. The pricesr and q are
normally regarded to be non-negative, but the very unlikely possibility exists that it may
pay off to offer Pasta Basta money for each unit of one preservative used in the production
provided that the price of the other is large enough. Therefore the prices are allowed to
take also negative values. The optimization problem of PresChem is thus exactlyDP .

3 General formulation of dual LP problems

3.1 Proof of the Duality Theorem

The typical formulation of an LP problem withn nonnegative variables andm equality
constraints is

min cx

Ax = b

x ≥ 0

wherec is an1 × n matrix,A is anm × n matrix andb is ann × 1 matrix of reals. The
process just described can be depicted as follows:
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min cx
Ax = b

x ≥ 0


 7→

maxy∈Rm{minx∈Rn
+
{cx + y(b − Ax)}} 7→

maxy∈Rm{minx∈Rn
+
{(c − yA)x + yb}} 7→




max yb
yA ≤ c

y free

The proof of the Duality Theorem proceeds in the traditional way: We find a set of mul-
tipliers which satisfy the dual constraints and gives a dual objective function value equal
to the optimal primal value.

Assuming thatP andDP have feasible solutions implies thatP can be neither infeasible
nor unbounded. Hence an optimal basisB and a corresponding optimal basic solutionxB
for P exists. The vectoryB = cBB−1 is called thedual solutionor the set ofSimplex mul-
tipliers corresponding toB. The vector satisfies that if the reduced costs of the Simplex
tableau is calculated usingyB asπ in the general formula

c̄ = c − πA

then c̄i equals 0 for all basic variables andc̄j is non-negative for all non-basic variables.
Hence,

yBA ≤ c

holds showing thatyB is a feasible dual solution. The value of this solution iscBB−1b,
which is exactly the same as the primal objective value obtained by assigning to the basic
variablesxB the values defined by the updated right-hand sideB−1b multiplied by the
vector of basic costscB.

The case in which the problem P has no optimal solution is for all types of primal and dual
problems dealt with as follows. Consider first the situation where the objective function
is unbounded on the feasible region of the problem. Then any set of multipliers must give
rise to a dual solution with value−∞ (resp.+∞ for a maximization problem) since this
is the only “lower bound” (“upper bound”) allowing for an unbounded primal objective
function. Hence, no set of multipliers satisfy the dual constraints, and the dual feasible
set is empty. If maximizing (resp. minimizing) over an empty set returns the value−∞
(resp.+∞), the desired relation between the primal and dual problem with respect to
objective function value holds - the optimum values are equal.
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Finally, if no primal solution exist we minimize over an empty set - an operation returning
the value+∞. In this case the dual problem is either unbounded or infeasible.

3.2 Other types of dual problem pairs

Other possibilities of combinations of constraint types and variable signs of course exist.
One frequently occurring type of LP problem is a maximization problem in non-negative
variables with less than or equal constraints. The construction of the dual problem is
outlined below:

max cx
Ax ≤ b

x ≥ 0


 7→

miny∈Rm
+
{maxx∈Rn

+
{cx + y(b − Ax)}} 7→

miny∈Rm
+
{maxx∈Rn

+
{(c − yA)x + yb}} 7→




min yb
yA ≥ c

y ≥ 0

Note here that the multipliers are restricted to being non-negative, thereby ensuring that
for any feasible solution,̂x1, · · · , x̂n, to the original problem, the relaxed objective func-
tion will have a value greater than or equal to that of the original objective function since
b−Ax̂ and hencey(b−Ax̂) will be non-negative. Therefore the relaxed objective function
will be pointwise larger than or equal to the original one on the feasible set of the primal
problem, which ensures that an upper bound results for all choices of multipliers. The set
of multipliers minimizing this bound must now be determined.

Showing that a set of multipliers exists such that the optimal value of the relaxed problem
equals the optimal value of the original problem is slightly more complicated than in the
previous case. The reason is that the value of the relaxed objective function no longer is
equal to the value of the original one for each feasible point, it is larger than or equal to
this.

A standard way is to formulate an LP problemP ′ equivalent to the given problemP
by adding aslack variableto each of the inequalities thereby obtaining a problem with
equality constraints:

max cx
Ax ≤ b

x ≥ 0


 =




max cx +0s
Ax +Is = b

x, s ≥ 0
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Note now that if we derive the dual problem forP ′ using multipliers we end up with the
dual problem ofP : Due to the equality constraints, the multipliers are now allowed to
take both positive and negative values. The constraints on the multipliers imposed by the
identity matrix corresponding to the slack variables are, however,

yI ≥ 0

i.e. exactly the non-negativity constraints imposed on the multipliers by the inequality
constraints ofP . The proof just given now applies forP ′ andDP ′, and the non-negativity
of the optimal multipliersyB are ensured through the sign of the reduced costs in optimum
since these now satisfy

c̄ = (c 0) − yB(A I) ≤ 0 ⇔ yBA ≥ c ∧ yB ≥ 0

SinceP ′ andP are equivalent the theorem holds forP andDP as well.

The interplay between the types of primal constraints and the signs of the dual variables is
one of the issues of duality, which often creates severe difficulties in the teaching situation.
Using the common approach to teaching duality, often no explanation of the interplay is
provided. We have previously illustrated this interplay in a number of situations. For
the sake of completeness we now state all cases corresponding to a primal minimization
problem - the case of primal maximization can be dealt with likewise.

First note that the relaxed primal problems providelower bounds, which we want tomax-
imize. Hence the relaxed objective function should be pointwiseless than or equalto the
original one on the feasible set, and the dual problem is amaximization problem. Re-
garding the signs of the dual variables we get the following for the three possible types of
primal constraints (Ai. denotes the i’th row of the matrixA):

Ai.x ≤ bi For a feasiblex, bi−Ai.x is larger than or equal to 0, andyi(bi−Ai.x) should
be non-positive. Hence,yi should be non-positive as well.

Ai.x ≥ bi For a feasiblex, bi − Ai.x is less than or equal to 0, andyi(bi − Ai.x) should
be non-positive. Hence,yi should be non-negative.

Ai.x = bi For a feasiblex, bi − Ai.x is equal to 0, andyi(bi − Ai.x) should be non-
positive. Hence, no sign constraints should be imposed onyi.

Regarding the types of the dual constraints, which we previously have not explicitly dis-
cussed, these are determined by the sign of the coefficients to the variables in the relaxed
primal problem in combination with the sign of the variables themselves. The coefficient
of xj is (c − yA)j. Again we have three cases:
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xj ≥ 0 To avoid unboundedness of the relaxed problem(c − yA)j must be greater than
or equal to 0, i.e. the j’th dual constraint will be(yA)j ≤ cj .

xj ≤ 0 In order not to allow unboundedness of the relaxed problem(c − yA)j must be
less than or equal to 0, i.e. the j’th dual constraint will be(yA)j ≥ cj .

xj free In order not to allow unboundedness of the relaxed problem(c − yA)j must
be equal to 0 since no sign constraints onxj are present, i.e. the j’th dual constraint
will be (yA)j = cj .

3.3 The Dual Problem for Equivalent Primal Problems

In the previous section it was pointed out that the two equivalent problems

max cx
Ax ≤ b

x ≥ 0


 =




max cx +0s
Ax +Is = b

x, s ≥ 0

give rise to exactly the same dual problem. This is true in general. SupposeP is any given
minimization problem in variables, which may be non-negative, non-positive or free. Let
P ′ be a minimization problem in standard form, i.e a problem in non-negative variables
with equality constraints, constructed fromP by means of addition of slack variables to
≤-constraints, subtraction of surplus variables from≥-constraints, and change of vari-
ables. Then the dual problems ofP andP ′ are equal.

We have commented upon the addition of slack variables to≤-constraints in the preceding
section. The subtraction of slack variables are dealt with similarly. A constraint

ai1x1 + · · · + ainxn ≥ bi ⇔ (bi − ai1x1 − · · · − ainxn) ≤ 0

gives rise to a multiplier, which must be non-negative in order for the relaxed objective
function to provide a lower bound for the original one on the feasible set. If a slack
variable is subtracted from the left-hand side of the inequality constraint to obtain an
equation

ai1x1 + · · ·+ ainxn − si = bi ⇔ (bi − ai1x1 − · · · − ainxn) + si = 0

the multiplier must now be allowed to vary overR. A new constraint in the dual problem,
however, is introduced by the column of the slack variable, cf. Section 2:

−yi ≤ 0 ⇔ yi ≥ 0,
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thereby reintroducing the sign constraint foryi.

If a non-positive variablexj is substituted byx
′
j of opposite sign, all signs in the corre-

sponding column of the Simplex tableau change. For minimization purposes however, a
positive sign of the coefficient of a non-positive variable is beneficial, whereas a negative
sign of the coefficient of a non-negative variable is preferred. The sign change of the col-
umn in combination with the change in preferred sign of the objective function coefficient
leaves the dual constraint unchanged.

Finally, if a free variablexj is substituted by the difference between two non-negative
variablesx

′
j andx

′′
j two equal columns of opposite sign are introduced. These give rise to

two dual constraints, which when taken together result in the same dual equality constraint
as obtained directly.

The proof of the Duality Theorem for all types of dual pairsP andDP of LP problems
may hence be given as follows: TransformP into a standard problemP ′ in the well
known fashion.P ′ also hasDP as its dual problem. Since the Duality Theorem holds for
P ′ andDP as shown previously andP ′ is equivalent toP , the theorem also holds forP
andDP .

4 Discussion: Pros and Cons of the Approach

The main advantages of teaching duality based on multipliers are in my opinion

• the independence of the problem modeled by the primal model and the introduction
of the dual problem, i.e. that no story has go with the dual problem,

• the possibility to avoid problem transformation and “duality by definition” in the
introduction of general duality in linear programming,

• the clarification of the interplay between the sign of variables and the type of the
corresponding constraints in the dual pair of problems,

• the early introduction of the idea of getting information about the optimum of an
optimization problem through bounding using the solution of an easier problem,

• the possibility of introducing partial dualization by including only some constraint
violations in the objective function, and

• the resemblance with duality in non-linear programming, cf. [3].

The only disadvantage in my view is one listed also as an advantage:

• the independence of the introduction of the dual problem and the problem modeled
by the primal model
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since this may make the initial motivation weaker.

I do not advocate that duality should be taught based solely on the multiplier approach,
but rather that it is used as a supplement to the traditional presentation (or vice versa). In
my experience, it offers a valuable supplement, which can be used to avoid the situation
of frustrated students searching for an intuitive interpretation of the dual problem in cases,
where such an interpretation is not natural. The decision on whether to give the traditional
presentation of duality or the multiplier approach first of course depends on the particular
audience.
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