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Min Cost Flow - Terminology
We consider a digraph G = (V (G), E(G)) in
which each edge e has a capacity ue ∈ R+ and
a unit transportation cost ce ∈ R.

Each vertex v furthermore has a demand
bv ∈ R. If bv ≥ 0 then v is called a sink, and if
bv < 0 then v is called a source.

We assume that b(V ) =
∑

v∈V bv = 0.
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Min Cost Flow - Example
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Min Cost Flow - Definition
The Min Cost Flow problem consists in supplying
the sinks from the sources by a flow in the cheapest
possible way:

min
∑

e∈E cexe

fx(v) = bv v ∈ V

0 ≤ xvw ≤ uvw (u,w) ∈ E

where fx(v) =
∑

(w,v)∈E xwv −
∑

(w,v)∈E xvw.
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Special cases
Numerous flow problems can be stated as a Min
Cost Flow problem:

1. The Transportation Problem

2. The Shortest Path Problem

3. The Max Flow Problem
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Min Cost Flow - Dual LP
The dual variables corresponding to the flow
balance equations are denoted yv, v ∈ V , and
those corresponding to the capacity constraints
are denoted zvw, (v, w) ∈ E.

The dual problem is now:

max
∑

v∈V bvyv −
∑

(v,w)∈E uvwzvw

−yv + yw − zvw ≤ cvw ⇔ (v, w) ∈ E

−cvw − yv + yw ≤ zvw (v, w) ∈ E

zvw ≥ 0 (v, w) ∈ E
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c̄vw = cvw + yv − yw is called the reduced cost for
the edge (v, w), and hence −cvw − yv + yw ≤ zvw is
equivalent to

−c̄vw ≤ zvw

When is the set of feasible solutions x, y and z
optimal?
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Optimality Conditions I
If ue = +∞ (i.e. no capacity constraints for e)
then ze must be 0 and hence c̄e ≥ 0 just has to
hold (primal optimality condition for the LP).

If ue 6= +∞ then ze ≥ 0 and ze ≥ −c̄e must hold.
z has negative coefficient in the objective
function – hence the best choice for z is as
small as possible: ze = max{0,−c̄e}. Therefore,
the optimal value of ze is uniquely determined
from the other variables, and ze is
“unnecessary” in the dual problem.
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Optimality Conditions I - Comp. Slackness
The complementary slackness conditions (each
primal variable times the corresponding dual
slack must equal 0, and each dual variable
times the corresponding primal slack must
equal 0 in optimum) now give:

xvw > 0 ⇒ −c̄vw = zvw = max(0,−c̄vw)

i.e. (xe > 0 ⇒ −c̄e ≥ 0) ≡ (c̄e > 0 ⇒ xe = 0)

and
ze > 0 ⇒ xe = ue

i.e. (−c̄e > 0 ⇒ xe = ue) ≡ (c̄e < 0 ⇒ xe = ue)
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Optimality Conditions II
Summing up: A primal feasible flow satisfying
demands in sinks from sources respecting the
capacity constraints is optimal if and only if we
can find a dual solution ye, e ∈ E such that for all
e ∈ E it holds that:

c̄e < 0 ⇒ xe = ue(6= ∞)

c̄e > 0 ⇒ xe = 0

All pairs (x, y) of optimal solutions satisfy these
conditions — and so what?
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Optimality Conditions III
For a legal flow x in G, the residual graph is
(like for Max Flow) a graph, in which the paths
indicate how flow excess can be moved in G
given that the flow x already is present. The
only difference is that each edge has a cost
assigned.
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Optimality Conditions - Residual Graph
The residual graph Gx for G wrt. x is defined by

V (Gx) = V (G)

E(Gx) = Ex =

{(v, w) : (v, w) ∈ E ∧ xvw < uvw}∪

{(v, w) : (w, v) ∈ E ∧ xwv > 0}
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The unit cost c′vw for an edge with xvw < uvw is
cvw, while c′vw for an edge with xwv > 0 is −cvw.

Note that a dicircuit with negative cost in Gx

corresponds to a negative cost circuit in G, if
cost are added for forward edges and
subtracted for backward edges.

Note that if a set of potentials yv, v ∈ V are
given, and the cost of a circuit wrt. the reduced
costs for the edges (c̄vw = cvw + yv − yw) are
calculated, the cost remains the same as the
original costs – the potentials are “telescoped”
to 0.
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Min Cost Flow - Negative cost circuits
A primal feasible flow satisfying sink demands
from sources and respecting the capacity
constraints is optimal if and only if an
x-augmenting circuit with negative c-cost (or
negative c̄-cost – there is no difference) does
not exist.

The is the idea behind the identification of
optimal solutions in the network simplex
algorithm.
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Min Cost Flow - Network Simplex Algorithm
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