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Min Cost Flow - Terminology

We consider a digraph G = (V(G), E(G)) In
which each edge e has a capacity u. € ‘R and
a unit transportation cost ¢, € R.

Each vertex v furthermore has a demand
b, € R. If b, > 0then v Is called a sink, and If
b, < 0 then v Is called a source.

We assume that b(V') = > b, = 0.
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Min Cost Flow - Example
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Min Cost Flow - Definition

The Min Cost Flow problem consists in supplying
the sinks from the sources by a flow in the cheapest
possible way:

min ) . p CeTe
fz(v) = b, veV
0 < zpy < Upw (u,w) €E

where £ (v) = 2 _w)er Lo = 2 (ww)er Tow-
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Special cases
Numerous flow problems can be stated as a Min
Cost Flow problem:
1. The Transportation Problem

2. The Shortest Path Problem
3. The Max Flow Problem
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Min Cost Flow - Dual LP

The dual variables corresponding to the flow
balance equations are denoted y,,v € V, and
those corresponding to the capacity constraints
are denoted z,,, (v,w) € E.

The dual problem is now:

max ),y bulv = D (pw)ek Yowivw
—UYp + Y — Zow < Cow & (v,w) € K
—Cow — Yo + Yu < Zow (v,w) € K
Zow > 0 (v,w) € E
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Cow = Cow + UYv — Yy 1S Called the reduced cost for
the edge (v, w), and hence —c,, — Yo + Yo < Zpw IS
equivalent to

<

T auw > Zopw

When is the set of feasible solutions z, y and z
optimal?
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Optimality Conditions |

If u. = +00 (I.e. no capacity constraints for e)
then z, must be 0 and hence ¢, > 0 just has to
hold (primal optimality condition for the LP).

If u, # +oo then z, > 0 and z, > —¢, must hold.
2 has negative coefficient in the objective
function — hence the best choice for z is as
small as possible: z. = max{0, —c.}. Therefore,
the optimal value of z, Is uniquely determined
from the other variables, and =, Is
“unnecessary” in the dual problem.
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Optimality Conditions | - Comp. Slackness

The complementary slackness conditions (each
primal variable times the corresponding dual
slack must equal O, and each dual variable
times the corresponding primal slack must
equal O in optimum) now give:

Ty > 0= —Cpyp = Zypw = Max(0, —Cyy)
.e. (z. >0=> —-¢.>0)=(¢. >0=z,=0)
and
2o > 0= 2. = U,
l.e. (—¢.>0= 2. =u.) = (¢ < 0= 2. = u)
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Optimality Conditions Il

Summing up: A primal feasible flow satisfying
demands in sinks from sources respecting the
capacity constraints is optimal if and only if we
can find a dual solution y., e € E such that for all
e € F 1t holds that:

Ce < 0=z, = uc(# 00)
Ce >0=x.=0

All pairs (x,y) of optimal solutions satisfy these
conditions — and so what?
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Optimality Conditions ll|

For a legal flow z In G, the residual graph is
(like for Max Flow) a graph, in which the paths
iIndicate how flow excess can be moved In G
given that the flow x already is present. The
only difference Is that each edge has a cost
assigned.
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Optimality Conditions - Residual Graph
The residual graph G, for G wrt. x Is defined by

{(v,w) : (v,w) € BN Ty < Uy U
{(v,w) : (w,v) € EAxyy > 0}

 w—)
d
c

Jesper Larsen & Jens Clausen 12

i



Informatics and Mathematical Modelling / Operations Research ..

The unit cost ¢, for an edge with x,,, < u, IS
cowy, While ¢ for an edge with z,,, > 0iS —cyy.

Note that a dicircuit with negative cost in GG,
corresponds to a negative cost circuit in G, If
cost are added for forward edges and
subtracted for backward edges.

Note that if a set of potentials y,, v € V' are
given, and the cost of a circuit wrt. the reduced
costs for the edges (¢, = cow + Yo — YY) are
calculated, the cost remains the same as the
original costs — the potentials are “telescoped”
to 0.
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Min Cost Flow - Negative cost circuits

A primal feasible flow satisfying sink demands
from sources and respecting the capacity
constraints is optimal if and only if an
r-augmenting circuit with negative c-cost (or
negative c-cost — there Is no difference) does
not exist.

The Is the idea behind the identification of
optimal solutions in the network simplex
algorithm.
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Min Cost Flow - Network Simplex Algorithm
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