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Branch-and-Cut for TSP
Branch-and-Cut is a general technique
applicable e.g. to solve symmetric TSP
problem.

TSP is NP-hard – no one believes that there
exists a polynomial algorithm for the problem.

TSP can be formulated as an integer
programming problem – for an n-vertex graph
the number of binary variables becomes n(n−1)

2 ,
and the problem has an exponential number of
subtour elimination constraints.
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The symmetric TSP

min
∑

e∈E dexe

s.t. x(δ(v)) = 2, v ∈ {1, . . . , n}
x(δ(S)) ≥ 2, ∅ ⊂ S ⊂ V

xe ∈ {0, 1}, e ∈ E
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The number of subtour elimination constraints
is huge (2|V |) and even though we can remove
half of those due to symmetry there are still
exponentially many.

therefore, in the relaxed version we remove the
integrality constraints and the exponentially
many subtour elimination constraints.
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Challenges
For the cutting plane approach to work we need to

1. be able to check whether any subtour
elimination constraints are violated (efficiently)
and

2. we must be able to solve the LP relaxation
efficiently.
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Problem 2
Start by solving a smaller variant of the original
problem. Let E ′ ⊆ E and solve:

min
∑

e∈E′ dexe

s.t. x(δ(v)) = 2, v ∈ {1, . . . , n}
x(δ(S)) ≥ 2, ∅ ⊂ S ⊂ V

0 ≤ xe ≤ 1, e ∈ E ′

An optimal solution x′ for this problem can be
extended to a feasible solution for the original
problem by x∗

e = x′
e, e ∈ E ′ and

x∗
e = 0, e ∈ E \ E ′.
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BUT this solution might not be optimal in the
original relaxed problem.

Idea: Look at the dual problem.
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Dual of the STSP

max
∑

v∈V 2yv +
∑

S⊂V 2YS

s.t. yu + yv +
∑

(u,v)∈δ(S) YS ≤ duv, (u, v) ∈ E ′

YS ≥ 0, S ⊂ V

If (y′, Y ′) is also feasible for the dual linear
programming problem of the original problem
then we know that x∗ is optimal

Otherwise add variables to E ′ that violated the
constraint of the dual linear programming
problem and resolve.
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Problem 1
Here we use branch-and-cut.

Start of by removing the subtour elimination
constraints. Then we get:

min
∑

e∈E dexe

s.t. x(δ(v)) = 2, v ∈ {1, . . . , n}
0 ≤ xe ≤ 1, e ∈ E

Let x∗ be a feasible solution to the initial linear
programming problem.
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If the solution falls apart into several
components then the node set S of each
component violates a subtour elimination
constraint. This situation is very easy to detect.

We might end in a situation where the graph is
not disconnected but there are actually subtour
elimination constraints that are violated. How
do we detect those?
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The separation algorithm
Use max-flow to find cuts that are violated in the
present situation. Here we have two problems:

Max-flow works on directed graphs – this is a
non-directed graph.

We need a sink and a source to run the
max-flow algorithm.
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Now we are in a good position. We are now able to
detect all possible subtour elimination constraints,
but is that enough to solve the problem?
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Consider the following part of a graph (dash is a
flow of 0.5).
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Comb inequalities
Let C be a comb with a handle H and teeth
T1, T2, . . . , T2k+1 for k ≥ 1. Then the solution x for a
feasible solution must satisfy:

x(E(H))+
2k+1∑

i=1

x(E(Ti)) ≤ |H|+
2k+1∑

i=1

(|Ti|−1)−(k+1)
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These cuts are generally still not enough but there
are more cuts we could add:

Grötschel and Padberg (1985)

Jünger, Reinelt and Rinaldi (1995)

Naddef (1990)

Even these are not enough. There is today no full
description of the convex hull for the TSP.
Furthermore for some of the valid inequalities the
exists no efficient (polynomial) separation algorithm.
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THEREFORE branch after having added all the
“simple” valid inequalities.

Example:

Upper bound: 56892 (simple heuristic)
Lower bound: 56785 (LP-relaxation, subtour
and simple comb-ineq)
Gap: 0.2% !!



17Jesper Larsen & Jens Clausen

Informatics and Mathematical Modelling / Operations Research

16 cities –
15 + 14 + 13 + . . . + 2 + 1 =
16×15

2 = 120 variables.

Let us keep the constraint
that∑

j xij = 2, i = 1, . . . , N .

Relax integrality constraints
on variables to 0 ≤ xij ≤ 1
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Objective value: 920

Forbid the subtour Skagen-
Thisted-Aalborg and
resolve
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Objective value: 960

Forbid the subtour
Fredericia-Kolding-Vejle
and resolve
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Objective value: 982

Forbid the subtour Kolding-
Fredericia-Vejle-Esbjerg-
Aabenraa-Tønder-Ribe and
resolve
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Objective value: 992.5

Identify a comb inequal-
ity: Handle being Thisted,
Ringkøbing and Herning;
teeth being (Thisted, Ska-
gen), (Ringkøbing, Esbjerg)
and (Herning, Vejle).
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Objective value: 992.5

Identify a comb inequal-
ity: Handle being Ve-
jle, Silkeborg and Aarhus;
teeth being (Vejle, Fred-
ericia), (Silkeborg, Viborg)
and (Aarhus, Randers).
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Objective value: 994.5

Identify a comb inequality:
Handle being Viborg, Ran-
ders and Aalborg; teeth
being (Viborg, Silkeborg),
(Randers, Aarhus) and
(Aalborg, Skagen).
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Objective value: 996

Integer solution!!!
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