The number of pancyclic arcs in a k-strong tournament

Anders Yeo

Department of Computer Science, Royal Holloway, University of London Egham Surrey, TW20 0EX United Kingdom

A tournament is a digraph, where there is precisely one arc between every pair of distinct vertices. An arc is pancyclic in a digraph D, if it belongs to a cycle of length l, for all $3 \le l \le |V(D)|$. Let p(D) denote the number of pancyclic arcs in a digraph D and let h(D) denote the maximum number of pancyclic arcs belonging to the same Hamilton cycle of D. Note that $p(D) \ge h(D)$. Moon showed that $h(T) \ge 3$ for all strong nontrivial tournaments, T, and Havet showed that $h(T) \ge 5$ for all 2-strong tournaments T. We will in this talk show that if T is a k-strong tournament, with $k \ge 2$, then $p(T) \ge nk/2$ and $h(T) \ge (k+5)/2$. This solves a conjecture by Havet, stating that there exists a constant a_k , such that $p(T) >= a_k * n$, for all k-strong tournaments, T, with $k \geq 2$. Furthermore the second result gives support for the conjecture $h(T) \ge 2k+1$, which was also stated by Havet. The previously best known bounds when $k \ge 2$ were $p(T) \ge 2k + 3$ and $h(T) \ge 5$. Furthermore some of the lemma's used in the above proofs immediately imply that every regular tournament is arc-pancyclic (which was first proved by Alspach), and that every 2-strong tournament contains 2 distinct vertices, such that all arcs out of them are arc-pancyclic. We conjecture that there in fact exists 3 such vertices, which would be best possible (even if we looked at k-strong tournaments for any fixed k > 1).