Edge Colourings of Graphs

Michael Stiebitz

(Technical University Ilmenau)

(joint work with L. M. Favrholdt and B. Toft)

For the chromatic index \(\chi'(G) \) of a (multi)graph \(G \) there are two natural lower bounds. On the one hand, \(\chi'(G) \geq \Delta(G) \) where \(\Delta(G) \) is the maximum degree of \(G \). On the other hand, \(\chi'(G) \geq W(G) \) where

\[
W(G) = \max_{H \subseteq G} \left[\frac{|E(H)|}{\frac{1}{2} |V(H)|} \right].
\]

A graph \(G \) is called elementary if \(\chi'(G) = W(G) \). Goldberg conjectured around 1970 that every graph \(G \) is elementary provided that \(\chi(G) \geq \Delta(G) + 2 \). For an integer \(m \geq 3 \), let \(J_m \) denote the class of all graphs \(G \) such that

\[
\chi'(G) > \frac{m}{m-1} \Delta(G) + \frac{m-3}{m-1}.
\]

Shannon’s theorem implies that \(J_3 \) is empty. Furthermore, for every integer \(m \geq 3 \), we have \(J_m \subseteq J_{m+1} \) and the class \(J = \bigcup_{m=3}^{\infty} J_m \) consists of all graphs \(G \) such that \(\chi'(G) \geq \Delta(G) + 2 \).

A graph \(G \) is called critical if \(\chi'(H) < \chi'(G) \) for every proper subgraph \(H \) of \(G \). Jakobsen conjectured around 1975 that every critical graph in \(J_m \) has at most \(m - 2 \) vertices provided that \(m \geq 3 \) is odd. Up to now this conjecture is known to be true only for \(m \in \{5, 7, 9, 11\} \). In all these cases the proof of the statement that every graph in \(J_m \) has at most \(m - 2 \) vertices is based on a proof of the seemingly more general statement that every graph in \(J_m \) is elementary. This was proved, independently, by Sørensen for \(m = 5, 7 \) (unpublished), by Andersen for \(m = 5, 7 \) in 1977, by Goldberg for \(m = 5 \) in 1973 and for \(m = 9 \) in 1984, by Nishizeki and Kashiwagi for \(m = 11 \) in 1990, and, by Tashkinov for \(m = 11 \) in 2001. We use an extension of Tashkinov’s method to prove that every graph in \(J_{13} \) is elementary.