Branchwidth of graphic matroids.

Frédéric Mazoit and Stéphan Thomassé
Projet Mascotte
INRIA Sophia-Antipolis, France.

A branch-decomposition of a graph $G = (V, E)$ is a ternary tree T and a bijection from the set of leaves of T into the set of edges of G. Every edge e of T partitions $T \setminus e$ into two subtrees, and thus correspond to a bipartition (E_1, E_2) of E, called e-separation. The width of (E_1, E_2) is the number of vertices of G incident to an edge of E_1 and an edge of E_2. The width of T is the maximum width of an e-separation. Finally, the branchwidth of G is the minimum width of a branch-decomposition of G.

The notion of branchwidth extends naturally to matroids, branch-decompositions being ternary trees which set of leaves is the ground set of the matroid. Here the width of a separation (E_1, E_2) is $rk(E_1) + rk(E_2) - rk(E) + 1$, where rk is the rank function of the matroid.

Answering a question of Geelen, Gerards, Robertson and Whittle, we prove that the branchwidth of a bridgeless graph is equal to the branchwidth of its cycle matroid.

Our result directly implies that the branchwidth of a planar bridgeless graph is equal to the branchwidth of its dual. This property was first proved by Seymour and Thomas.