
DM63 Final project

Posed by Jørgen Bang-Jensen, Department of Mathematics and Computer Science
University of Southern Denmark

The project will be available from the DM63 course page on October 27’th. 2005.
You must hand in your report by noon Monday December 19’th in JBJ’s mailbox in

the secretary’s office.

1 Formalia

The projects are evaluated according to the 13-point scale with external examination. Note
that it is not permitted to collaborate with each other concerning the project.

It is very important that you explain how your have obtained your results and how you
reach your conclusions based on those results. This includes an explanation of how you have
determined the final choice of parameters for the various heuristics. You may hand in your
report in English or Danish. If you would like a receipt showing that you have handed
in the report in time, you must ask the secretary for one!

In order to allow me to notify you in case there is a correction to the project-
description or similar, you should send an email to jbj@imada.sdu.dk informing
me that you are working on the project. This way I will be able to inform you
by email if there are changes.

2 Project description

In the course we have studied the graph partitioning problem (GP) extensively. The digraph
partitioning problem (DP) is the following obvious generalization of GP: Given a digraph
D = (V,A) and a weight function ω on A. Find a partitioning of V into two sets X, Y of
equal or almost equal size (if |V | is odd we take X to be the smaller of X and Y), such that
the total weight of the arcs from X to Y is minimized. That is we want to minimize

dp(X, Y) =
∑

i∈X,j∈Y

ω(ij)

Just as for the GP problem there are (at least) two possible neighbourhoods that can be used
in metaheuristics:

1. The interchange neighbourhood where a neighbour is obtained by interchanging a
vertex from X with one in Y

2. The move neighbourhood where a neighbour is obtained by moving a vertex from X
to Y or from Y to X. In the later case we must take care of the cost of getting back to
a(n almost) balanced partition.

1

The so-called Feedback arc set problem (FAS) is as follows: Given a digraph D =
(V,A), where V = {1, 2, . . . , n} and a real-valued weight function ω on A. Find a permutation
π1, π2, . . . , πn of V (that is, an ordering of V) such that the total weight of those arcs πjπi

where j > i (that is, the arcs that point backwards in the ordering) is minimized. Hence we
want to minimize

fas(π) =
n∑

i=1

n∑
j=i+1

ω(πjπi)

Again there are two obvious neighbourhoods:

1. interchange where we interchange two elements in the current permutation.

2. move where we select a vertex and a position where we will insert this. Thus if the
i’th element of π is selected a move is the operation that inserts πi anywhere in the
remaining permutation (example: if we make a move of 3 in 12345 we can get any of
the following neighbours 31245, 13245, 12345, 12435, 12453).

A closely related problem to FAS is the linear ordering problem (LO). Here we are given
a non-symmetric n × n matrix M of real numbers and the goal is to permute rows and
columns with the same permutation π so as to maximize the sum of the elements in the
upper triangular part of M , that is we want to maximize

lo(π) =
n∑

i=1

n∑
j=i+1

Mπi,πj .

By thinking of the matrix as the weighted adjacency matrix of a digraph, it is easy to see that
this problem is equivalent to solving the FAS with the same weight function, since minimizing
the weight of backward arcs is the same as maximizing the weight of the forward arcs. Note
that there might be loops in the digraph (corresponding to diagonal elements of M), but they
play no role in the problems.

There are several construction heuristics for the FAS. One of these is the one we could
call minimum relative in-weight order (MIO) [1, page 370]: It starts by removing the
vertex v for which the sum of the in-weights divided by the sume of the out-weights, i.e.

w(i) =
∑n

k=1 ω(ki)∑n
k=1 ω(ik)

is the smallest possible. This will be vertex 1 in the ordering. Vertex v (and all arcs incident
with it) is removed from the digraph. In the i’th step we choose the vertex whose w value is
smallest possible among the remaining vertices (and in the remaining digraph) and let this
vertex be number i in the ordering.

One can also construct a heuristic for FAS based on digraph partition. We call this the
recursive split heuristic (RS). Below DP(G, P) is a (meta)-heuristic for weighted digraph
partitioning (P denotes a subset of V and when P 6= V we only consider the subdigraph
induced by P). It will return a(n almost) balanced partition X, Y of P with “small” weight
on the arcs from X to Y . Then RS(G, P, k) can be described as the following recursive al-
gorithm. Here P is a subset of V and k is an integer in {2, . . . , n}.

2

RS(G, P, k)

1. If |P | < k then solve FAS using a construction heuristic and let Q be the resulting order.

2. Else

• T, S := DP (G, P) # Makes T = X and S = Y where X, Y = DP(G, P)

• T := RS(G, T, k) # Recursively order T

• S := RS(G, S, k) # Recursively order S

• Q = S + T # concatenate T after S

3. Return Q and value of ordering

In RS you may use any (meta)-heuristic for DP and any construction heuristic for the
small cases (including solving optimally).

During the semester you have encountered, among others, the following meta-heuristics
and we have discussed how to adapt these to the graph partitioning problem and also FAS:

• Simulated Annealing (SA).

• Genetic Algorithms (GA).

• Tabu Search (TS).

• Iterated local search(ILS)

• The Noising Method (NM).

• The modified noising method with moves and exchanges (MNME) as described in [3,
Pages 114-126].

• Guided local search (GLS) including Fast local search (FLS).

You should consult the weekly notes 1-6 for relevant parameters for the various heuristics.
see also [2]. We have also discussed the so-called Lin-Kernighan heuristic (LK) for graph
partitioning (see weekly note 1).

3 What should you do?

The aim of the project is to perform a detailed comparison of metaheuristics for FAS based
on the interchange or move neighbourhoods with the recursive split heuristic RS for FAS (as
defined above). The comparison should be based on two different kinds of input:

1. Digraphs with no weight on the arcs. Here the aim is just to minimize the number of
arcs backwards in the ordering.

2. Linear ordering instances from the literature. Here the aim is to minimize the total
weight of the backwards arcs.

3

You are expected to address all sub tasks below. Of course, you are not required to hand
in a full masters thesis, but you must show that you are able to plan reasonable experiments
and argue for your choices based on your findings from these experiments. Remember: It
is not the number of experiments that you make which is the issue of importance,
but it is the way you perform your experiments (including what to test next) and
your conclusions based on the experiments that is important!

In order to make it easier for others to read and understand your results you must present
them in the form of plots and tables (e.g. using gnuplot, excel or similar). The important
thing is that it is easy to see how you reach your conclusions based on the results you obtain.
The goal of the project is a report which compares the various methods and hence the reader
must be able to see what your conclusions are based on. When referring to a table to conclude
something, you must say where in the table the reader can find the things that support your
conclusion.

1. You must implement two meta-heuristics for FAS. One of these should be iterated local
search (see the notes on the course home page and [1]) and the other can be chosen
freely among SA,TS,GA,GLS,NM,NMME. Below X = ILS and let Y denote the other
metaheuristic you have chosen.

2. Implement each of the heuristics X and Y. Show a plot of a typical run (using a typical
choice of parameters) of the heuristic by plotting the solution value against the number
of iterations.

3. For X and Y you must perform and document experiments which illustrate how you
tune your heuristics to find good solutions. These tests should be based on your own
test data as well as test data from LOLIB and XLOLIB (see below). Your report must
contain a discussion of how to tune the algorithms (here you may use the suggestions on
the weekly notes concerning what experiments to make for the various heuristics). It is
very important that you argue for your final choice of parameters based on the observed
results. The discussion should be accompanied by figures which show the quality of the
algorithm as a function of the various parameters (compare with [2]).

In order to obtain reasonably significant results it is important that you experiment of
fairly large graphs. Besides answering the relevant questions from the weekly notes your
discussion should preferably answer the following questions, unless your choice of X or
Y makes the test irrelevant (see also the relevant weekly notes for each heuristic!):

• How should one perturb a local minimum in ILS? Is it better to use some (meta)heuristic
to make the perturbation than to make a certain number of interchanges?

• If you use interchanges as a perturbation, then how many do you need to make?
How does the number depend on the number of vertices?

• Should one only accept a new local minimum in ILS if it is better than the current
one, or is it better to use another criteria.

• Which neighbourhood is better for FAS, the interchange or the move neighbour-
hood?

• Is it good to mutate often in GA?

• What is a good crossover strategy for GA?

4

• Should the length of the Tabu list be dependent on n?

• Should the noise be the same for all edges in NM or is it better to noise each edge
independently.

• What happens if we just add noise to the objective function rather than to the
data?

• What are good features to penalize in GLS?

• How do you implement FLS to make it faster than a standard local search?

4. Run your tuned versions of each algorithm on several of the test graphs from LOLIB
and XLOLIB. Compare your results for the LOLIB instances to the optimal solutions
listed on the web page
http://www.iwr.uni-heidelberg.de/groups/comopt/software/LOLIB/
For the XLOLIB problems I will list best known solutions on the course page as soon
as I get them from the authors.

When you make this comparison you should remember to convert your ob-
jective function to the one for the LO problem. This is done by calculating lo(π)
for the permutation π found by your FAS algorithm

5. Implement and tune a meta-heuristic W of your own choice for the digraph partitioning
problem. You do not have to give a detailed documentation of the tuning.
You can check its quality on the standard GP problems from Johnsons test base and
on homemade digraphs where you know the answer. Document this in a table, showing
the quality on selected Johnson graphs.

6. Use W and a construction heuristic to implement the RS heuristic for FAS. Below Z
denotes the RS heuristic obtained this way.

7. Experiment with the parameter k in Z to see at what stage it is better to shift to the
construction heuristic.

8. Perform experiments in order to compare the tuned heuristics X, Y and Z regarding
their ability to find good solutions for FAS problems. This comparison should be based
on both unweighted digraphs as well as graphs from (X)LOLIB in order to determine
whether it is the same heuristic which is the best for all types of test graphs. In these
test you must address the following:

(a) Which heuristic finds the best solution? Is it always the same heuristic?

(b) How large is the difference in speed among the heuristics. That is, how much time
does it take to perform one run of each algorithm (here it is assumed that you use
a stopping criterion for each algorithm).

(c) Suppose now that you only have a certain amount of time available, say 5 minutes
and you allow each heuristic precisely this amount of time (by restarting if it finishes
early). Which heuristic is now the winner and how does the relative ranking among
the heuristics change?

(d) For those of your heuristics where it makes sense, try the variant where you stop
the algorithm earlier and the perform one descent at the end. Does this lead to
better results?

5

9. Try to explain what you see. I.e. if one heuristic is much better (much worse) than
the others, try to give a reason why this could be so.

4 Test data

In the experiments above you should use

• Your own test data, e.g. graphs where you know a good ordering/partition. This can
be obtained in several ways and you should suggest some and try them.

• Benchmark problems from LOLIB:
http://www.iwr.uni-heidelberg.de/groups/comopt/software/LOLIB/

• Benchmark problems from the XLOLIB:
http://www.intellektik.informatik.tu-darmstadt.de/ schiavin/lop/
These files will be made available to you via the homepage of the course

• Methods for making your own test instances:

1. Make random orientations of graphs from Johnson’s test base. The graphs here
are undirected so Mij = 1 if and only if Mji = 1. Delete one of these 1’s randomly
for each pair i, j with an edge between then.

2. Make random weighted digraphs from Johnson’s graphs. This time you change the
weights of the arcs to a random number and do it so that ω(ij) is not necessarily
the same as ω(ji).

3. Construct some acyclic (unweighted or weighted) digraphs (e.g. by fixing an order
of an undirected graph and orienting all arcs forward).

4. Combine two digraphs G, H for which you know good orderings by putting a few
(or no) arcs between them.

• You are also welcome to use other benchmark sets that you have found on the WWW
Remember to state where you have the data from!

References

[1] T. Schiavinotto and T. Stützle, The linear ordering problem: Instances, Search Space
Analysis and Algorithms, Jounrnal of Mathematical Modelleing and Algorithms 3 (2004)
367-402.

[2] D. S. Johnson, C. R. Aragon, L. A. McGeoch and C. Schevon, Optimization by simulated
annealing: an experimental evaluation; part I, Graph partitioning”,Operations research
37 (1989) 865-892.

[3] Noter til DM63, Efterrssemestret 2005, IMADA Syddansk Universitet.

6

