
Institut for Matematik og Datalogi
Syddansk Universitet

December 3, 2001
JFB

Introduction to Information Technology
E01 � Note 7

Lecture, November 16

We covered sections 3.5.2, 3.5.4 and most of 3.6 in chapter 3, plus gave an example from
computational molecular biology on protein alignment. Spreadsheets and statistics in
Maple were demonstrated.

Lecture, November 30

We will �nish section 3.6 and begin on chapter 14, with emphasis on section 14.7 and
cryptography. Sorting from the algorithms lab will be discussed, including the algorithm
QuickSort.

Lecture, December 14

We will continue with cryptography: classical and public key cryptography, RSA, and
digital signatures. Encryption and digital signatures with PGP will be demonstrated.
You can �nd a short introduction to cryptography and PGP through the WorldWideWeb.
From the Web page for this course, you can �nd a link. The most relevant sections are
�What is cryptography?�, �Public key cryptography�, �How PGP Works�, �Keys�, �Digi-
tal signatures�, and �What is a passphrase?�. If anyone ever asks you to certify his/her
certi�cate, you should read the appropriate parts of that article before you do it.

Primary Lab 7 - for week 49

The goal of this lab is to help you to gain some understanding of the fact that most problems
have more than one algorithmic solution and that these solutions can di�er greatly as to
how practical they are. You will experiment with three di�erent sorting algorithms and
compare them. Review section 3.5.2 in the textbook before coming to the lab.
To get approval for this lab, send an e-mail to your lab instructor with the answers to all
of the questions asked below. The questions (some of which are requests for explanations)
are in italics below.
To start up the program you should use, click on Start → Programmer → Accessories

→ Command Prompt. Then, in the window, type javaw salsa.Salsa. Note that in

1

its standard mode, the program sorts bars of di�erent lengths, rather than numbers. It is
easy to think of the bars as numbers, and it is easiest to see what is happening with the
bars.

Exercise 1

In the window that opens, select Algorithm Type → Sort. Under Sort Type, choose
Selection Sort. You can get a description of the algorithm by clicking on the + boxes at
the left. The + means that the text can be expanded. Read about the algorithm. There
is a major di�erence between this and the one described in the textbook (and in lectures).
What is the di�erence?

Set the # of Bars to 8 and the Speed down to 1 (click on the left arrow or move the bar
to the left). Click on Step and watch the algorithm execute (both the pseudocode on the
left and the sorting of the bars on the right). What does a red bar mean? A blue bar? A
green bar? A yellow bar?

Change the Display Type to Number. Set the Speed to 0. Click on Start. What
numbers do you get? (Write them down in the order they appear.) Change the Speed to 1
again and click on Step. Click on Pause after three numbers have been sorted (placed in
their �nal positions). Write down the current order for the numbers. (If the Pause button
has changed to a Resume button, you may need to click once to change it back to Pause

and again to actually pause.) Click on Resume to make the algorithm �nish running.

Exercise 2

Running time of Selection Sort. Write down the current values for # of Bars, # of

Swaps, and # of Compares. The analysis in the textbook (and done in lecture) says
that the number of comparisons should be 1

2
n2 − 1

2
n. (See page 92 in the textbook.) How

many comparisons should there theoretically be in this case, where n = 8? How does this
compare with practice? Explain why there were 7 swaps.

Switch back to bars for the Display Type, and increase the Speed. Try running Selection
Sort with 25 bars, 50 bars, and 100 bars. Write down in each case the # of Bars, # of

Swaps, and # of Compares. How do these compare with the predicted values? What
values would you expect if the number of bars was 10000?

Exercise 3

Change the Sort Type to Quick Sort. Expand the description on the left to see the
algorithm and the explanation. Note that the explanation under e�ciency just assumes
that the pivot element ends up in the middle every time. This does not happen every time,
but a complete average case analysis is beyond the scope of this course. It is not so hard
to show that if the pivot element is always within the middle 15/16 of the elements, then
you get O(n log n) time anyway. Intuitively, it seems likely that this will happen most of

2

the time, so that is why one generally gets this behavior. Start the algorithm with 25 bars
and Speed 1 to see how it works. What are the blue bars? The red bars?

Increase the Speed. Try running it three times with 25 bars, writing down the # of Bars,
of Swaps, and # of Compares. Why didn't you get the same answer every time?

Try running Quick Sort with 25 bars, 50 bars, and 100 bars. Write down in each case the
of Bars, # of Swaps, and # of Compares. What do you conclude about Quick
Sort's running time? Is O(n log n) believable? Try to make an estimate as to how long
Quick Sort would take with 10000 bars.

Exercise 4

Change the Arrangement of the bars to Ascending, so your initial data starts out
sorted, instead of random. Try running Quick Sort with 25 bars. How does this compare
with Selection Sort? Explain your results.

Exercise 5

Try another sorting algorithm, preferably one of the �rst three on the menu. Which one
did you try? How does it compare with Selection Sort and Quick Sort?

Optional: Explain how your algorithm works and the running time.

Exercise 6

E-mail your answers to your lab instructor. Remember to logo� your computer, but do
not push any of the buttons on it.

3

