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Cryptology – F03 – Note 13

Lecture, May 6

We continued with zero-knowledge from the notes by Goldwasser and Bellare,
covering section 11.2.5, plus some details missed earlier in section 11.2.

Lecture, May 13

We will continue with zero-knowledge, mostly with examples.

Lecture, May 20

We will cover secret sharing and oblivious transfer from the notes by Gold-
wasswer and Bellare, and introduce secure pseudorandom number generators.

Problems for Thursday, May 22

1. Let g, h, and f be elements of the group ZZ∗p , where p is prime. To
show that f is in the subgroup generated by the two elements g and
h, one can execute the following protocol dlog2 pe times. Suppose that
p, g, h, and f are given as input to a Prover and Verifier. Assume the
Prover knows an x and a y such that f ≡ gxhy (mod p).

Prover Verifier

Choose random
k, l ∈ {1, ..., p− 1}.
Let z = f · gk · hl (mod p).

z -
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Choose a random
b ∈ {0, 1}.

b�

Let r1 = k + b · x (mod p− 1),
and r2 = l + b · y (mod p− 1).

(r1, r2)-
Check that ,
z = f 1−b · gr1hr2 (mod p).
If not, reject and halt.

a. Prove that the above protocol is an interactive proof system showing
that f ≡ gx

′ · hy′ (mod p) for some integers x′ and y′.

b. Suppose that f ≡ gx
′ ·hy′ (mod p) for some integers x′ and y′. What

is the probability distribution of the values (z, r1, r2) sent by a Prover
following the protocol?

c. Prove that the above protocol is perfect zero-knowledge.

2. Suppose that p is a prime. The element g is a generator of the group ZZ∗p
if and only if for every h ∈ ZZ∗p there is an x such that gx ≡ h (mod p).

a. Suppose we choose an element h uniformly at random in ZZ∗p . Show
that if g is not a generator of ZZ∗p , then the probability that there exists
x such that h ≡ gx (mod p) is at most 1/2.

b. Give a zero-knowledge proof that g is a generator for ZZ∗p . Show
that it is an interactive proof system. Show that it is zero-knowledge.

c. Can your protocol be executed by an efficient (polynomial time)
prover? Why or why not?

3. In class, we looked at a bit commitment scheme which had its security
based on the Quadratic Residuosity Assumption. User A has a public
key pair (N, y), where N is the product of two large primes and y is
a quadratic nonresidue with Jacobi symbol +1. To commit to a bit b,
user A chooses a random r ∈ Z∗N and produces the blob ybr2 (mod N).
Suppose that user A has committed to two bits b1 and b2, producing
blobs B1 and B2. Show how A can use the blobs B1 and B2 to reveal
c such that c = b1 XOR b2, and to prove to another user B that c =
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b1 XOR b2, without revealing b1 or b2. (The fact that this can be
done means that this system for producing blobs has what is called the
equality property, because it can be used to show that two blobs are
commitments to equal bits, showing that the XOR is zero.)

4. Consider MAJORITY gates with fan-in n, where n = 2m + 1. The
output should be one if at least m+1 of the inputs are one, and zero if at
least m+ 1 of the inputs are zero. Suppose that user A has committed
to n input bits, b1, b2, ..., bn, and one output bit bn+1, and produced
blobs (bit commitments) B1, B2, ..., Bn, Bn+1, using the scheme based
on the quadratic residuosity. If user A wishes to prove to user B that
B1, B2, ..., Bn, are commitments to the inputs to a MAJORITY gate
and Bn+1 is a commitment to the output of that same MAJORITY
gate, user A only need show that there are m + 1 inputs which are
equal to the output. In order to hide which of the inputs are the same
as the output, user A will produce n more blobs corresponding to the
original input blobs for that gate. These additional n blobs will be
commitments to the same bits as the input blobs, but user A will send
them to user B in random order, so user B will be unable to determine
the correspondence. Now, user B will send user A a challenge c ∈ {0, 1}.
If c = 0, user A will show user B the correspondence between the
input blobs and the n additional blobs, telling user B which additional
blob corresponds to which original input blob and proving it using the
equality property If c = 1, user A will show that m+1 of the additional
blobs are commitments to the same bit as Bn+1 is, again using the
equality property. Thus, the protocol is as follows (“random” means
independently, from a uniform distribution):

Repeat the following k(n+ 1) times, where k is the length of the blobs produced:
User A: Choose random r1, r2, ..., rn ∈ Z∗N .

Create Ci = ybir2
i (mod N), for 1 ≤ i ≤ n.

Choose a random permutation σ of the numbers 1, 2, ..., n.
Send user B the blobs (D1, D2, ..., Dn) = (Cσ(1), Cσ(2), ..., Cσ(n)).

User B: Choose random e ∈ {0, 1}.
Send e to user A.

User A: Case e = 0: Send σ to user A.
Use the equality property to show that Bσ(i) and Di

are commitments to the same bit, for 1 ≤ i ≤ n.
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Case e = 1: Choose a subset {Di1 , Di2 , ..., Dim+1} of the Dis of size
m+ 1, such that those Di’s are commitments to the
same bit as the output blob Bn+1. (If there are more
than m+ 1 satisfying this, choose among them
randomly.) Use the equality property to show that Dij

and Bn+1 are commitments to the same bit, for
1 ≤ j ≤ m+ 1.

User B accepts if user A has correctly answered all challenges and rejects otherwise.

a Show that the protocol described above is an interactive proof system
proving that B1, B2, ..., Bn, are commitments to the inputs to a MA-
JORITY gate and Bn+1 is a commitment to the output of that same
MAJORITY gate.

b Show that the protocol described above is computational zero-knowledge,
assuming the Quadratic Residuosity Assumption.

5. Use problem 4 to design a computational zero-knowledge interactive
proof system proving that B1 and B2 are commitments to the inputs
to an OR gate and B3 is a commitment to the output to that same OR
gate. (Hint: note that an OR gate has an even number of inputs, but
the MAJORITY gate described above has an odd number of inputs.
Try adding a special extra input to the OR gate.)
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