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Alle sædvanlige hjælpemidler (lærebøger, notater, etc.) samt brug af lomme-
regner er tilladt.

Eksamenssættet best̊ar af 5 opgaver p̊a 5 nummererede sider (1–5). Fuld besvarelse
er besvarelse af alle 5 opgaver. Opgavernes vægt ved bedømmelsen er angivet i
parenteser ved starten af hver opgave.

Der må gerne refereres til algoritmer og resultater fra lærebogen inklusive øvelsesop-
gaverne. Specielt må man gerne begrunde en p̊astand med at henvise til, at det
umiddelbart følger fra et resultat i lærebogen (hvis dette alts̊a er sandt!). Hen-
visninger til andre bøger (udover lærebogen) accepteres ikke som besvarelse af
et spørgsmål.

Bemærk, at hvis der er et spørgsmål i en opgave, man ikke kan besvare, kan man
godt besvare de efterfølgende spørgsmål og blot antage at man har en løsning
til de foreg̊aende spørgsmål.
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Problem 1 (10%)

a. Suppose that a keystream S is produced by a linear feedback shift register
with n stages (by a linear recurrence relation of degree n). Suppose the period
is 2n − 1. Consider any positive integer i and the following triples of positions
in S:

(Si, Si+1, Si+2), (Si+1, Si+2, Si+3), ..., (Si+2n−2, Si+2n−1, Si+2n).

How many of these triples are such that (Sj, Sj+1, Sj+2) = (1, 1, 1)? (In other
words, how many times within one period does the pattern 111 appear?)

Problem 2 (15%)

Suppose a cryptosystem has P = {a, b, c, d}, C = {1, 2, 3, 4} and K = {K1, K2, K3}.

The encryption rules are as follows:

a b c d

K1 1 4 3 2
K2 4 3 2 1
K3 3 4 1 2

Suppose Pr(Ki) = 1/3 for 1 ≤ i ≤ 3, Pr(a) = 1/2, Pr(b) = 1/4, PrP (c) = 1/8,
and Pr(d) = 1/8.

a. Compute the probabilities Pr(y) for all y ∈ {1, 2, 3, 4}.
b. Does this cryptosystem achieve perfect secrecy? Explain your answer.

Problem 3 (20%)

a. Suppose two users A and B share a secret n-bit key, k. In order for B
to authenticate A, he could check that she has the same key k. Consider the
following protocol: B chooses a random bit string r of length n and computes
c, the bit-wise exclusive-or of r and k. B sends c to A, who computes d, the
bit-wise exclusive-or of c and k. A sends d to B who checks that d and r are
the same. Should d = r? Is this protocol secure? Why or why not?

b. In the RSA cryptosystem, the public key consists of the modulus n and the
exponent b, while the decryption exponent a is kept secret. Suppose a user U
leaks his secret key a. Suppose further that when creating a new key pair, for
efficiency reasons, he keeps the same modulus, but finds new exponents a′ and
b′. Is this secure? Why or why not?

c. In the El-Gamal cryptosystem in Z∗
p , the public key consists of the modulus

p and the elements α and β, while the discrete logarithm a such that β =
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αa (mod p) is kept secret. Suppose a user U leaks his secret key a. Suppose
further that when creating a new key pair, for efficiency reasons he keeps the
same modulus, but finds new elements α′ and β′ and a new secret a′ such that
β = αa′

(mod p). Is this secure? Why or why not?

d. The known-plaintext attack on the linear feedback shift register stream ci-
pher discussed in the textbook requires n bits of plaintext and n corresponding
bits of cipher text where n = 2m (and the recurrence has degree m) to recon-
struct the entire key stream. These bits need to be consecutive. Suppose that
instead of n consecutive bits, the cryptanalys has m distinct sets of only m + 1
consecutive bits. How would this cryptanalyst attempt to reconstruct the entire
key stream?

Problem 4 15%

In the RSA cryptosystem, the public key consists of the modulus n and the
exponent b, while the decryption exponent a is kept secret. A user can use
its own key to create bit commitments as follows: Suppose the user wants to
commit to a bit b. It chooses a random number r, with 1 ≤ r < n, subject to
the restriction that the low order bit of r is b. Then it encrypts r using its own
key to create the commitment B.

a. Under what assumption is this bit commitment scheme “hiding”, i.e. for
any constant ε and any probabilistic distinguisher, the probability that the
distinguisher correctly determines b from B is less than 1

2
+ ε? Give as weak an

assumption as you can.

b. How can the user open a commitment?

c. How can the user give a zero-knowledge proof that it knows the value b?
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Problem 5 (40%)

Let n be the product of two large primes, and let yi ≡ x2
i (mod n) for 1 ≤ i ≤ k

be quadratic residues in the group Z∗
n. Assume the Prover knows the values

x1, x2, ..., xk and that both the Prover and the Verifier are given the values n
and y1, y2, ..., yk. To show that y1, y2, ..., yk are all quadratic residues, one can
execute the following protocol dlog2 ne times.

Prover Verifier

Choose random
subset R of {1, ..., k}.

R�

Choose random
r ∈ Z∗

n.
Let z ≡ r2 · ∏

i∈R yi (mod n).
z -

Choose a random
b ∈ {0, 1}.

b�

Let s ≡ r · (∏i∈R xi (mod n))b.
s -

Check that
s2 ≡ z · (∏i∈R yi (mod n))b−1

and s ∈ Z∗
n.

If not, reject and halt.

You may use the following fact:

Fact: Let S = A ∪ B, where A and B are disjoint sets. Suppose R is a
randomly chosen subset of S, i.e. each element of S is chosen with probability
1
2
, independently of all other choices. Then, if A 6= ∅, the probability that an

an odd number of elements from A is chosen is 1
2
.

a. Suppose that at least one of the yi is a quadratic nonresidue. What distri-
bution do the values for z have when the Prover follows the protocol?

b. Prove that the above protocol is an interactive proof system showing that
all of the yi are quadratic residues.

c. Suppose that all of the yi are quadratic residues. What distribution do the
values for z have when the Prover follows the protocol?
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d. Prove that the above protocol is perfect zero-knowledge.
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