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Cryptology – F08 – Week 11

Lecture, April 16

We covered sections 8.3 and 7.6 (actually from some notes).

Lecture, April 22

We will cover the Blum-Goldwasswer Public-key Cryptosystem from section
8.4 and begin on zero-knowledge (from the notes by Ivan Damg̊ard and Jesper
Buus Nielsen, available through the course’s homepage).

Lecture, April 24

We will continue with zero-knowledge from the notes and slides.

Lecture, April 30

We will continue with zero-knowledge, from the notes and slides, and begin
on chapter 9 in the textbook.

Problem session April 29. Note no class on May 1.

1. Do exercises 8 through 10 in the notes by Damg̊ard and Nielsen.

2. Let p be a large prime and let x, y ∈ Z∗
p . Suppose that x = gk (mod p)

and y = hk (mod p). Assume the Prover knows the value k and that
both the Prover and the Verifier are given the values p, g, h, x, and
y. To show that the discrete logarithm of x with respect to g is equal
to the discrete logarithm of y with respect to h, one can execute the
following protocol:
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Prover Verifier

Choose random s ∈ Zp−1.
Let u ≡ gs (mod p)
v ≡ hs (mod p). u, v -

Choose a random c ∈ Zp−1.

c�

Let e ≡ c · k + s (mod p− 1).
e -

Check that
ge ≡ xc · u (mod p)
and he ≡ yc · v (mod p).
If so, accept.
Otherwise, reject.

a. Prove completeness for the above protocol, showing that (assuming
that both the Prover and Verifier follow the protocol) the Verifier will
accept if the discrete logarithm of x with respect to g is equal to the
discrete logarithm of y with respect to h.

b. Prove soundness for the above protocol. Assume that the discrete
logarithm of x with respect to g is not equal to the discrete logarithm
of y with respect to h. (Hint: after assuming that the Prover can give
acceptable answers for two different values of c, show how a transcript
containing both executions could be used to find the discrete logarithm
of x with respect to g and the discrete logarithm of y with respect to
h.)

c. Prove that the above protocol is honest verifier zero-knowledge, i.e.,
show that one can efficiently generate conversations ((u, v), c, e) with
the same distribution as produced by the honest Prover and Verifier,
without knowing k.
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3. The Subgroup Membership Problem is as follows: Given a positive
integer n and two distinct elements α, β ∈ Z∗

n, where the order of α is
l and is publicly know, determine if β is in the subgroup generated by
α.

Suppose that α, β, l, and n are given as input to a Prover and Verifier,
and that the Prover is also given k such that αk = β (mod n). Consider
the interactive protocol in which the following is repeated log2 n times:

Prover Verifier

Choose random 0 ≤ j ≤ l−1}.
Compute γ = αj (mod n). γ -

Choose a random
c ∈ {0, 1}.

c�

Compute h = j + ck (mod l).
h -

Check that
αh ≡ βcγ (mod n).
If not, reject and halt.

(a) Prove that the above protocol is an interactive proof system for
Subgroup Membership.

(b) Suppose that β is in the subgroup generated by α. Show that
the number of triples (γ, c, h) which the Verifier would accept is
2l and that each such triple is generated with equal probability if
both the Prover and Verifier follow the protocol.

(c) Suppose that β is in the subgroup generated by α. What is the
distribution of the values γ, h sent by a Prover following the pro-
tocol?

(d) Prove that the above protocol is perfect zero-knowledge.

(e) If n is a prime, what value can you use for l? If n is not prime, is
it reasonable to make this value l known?
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Assignment due Thursday, May 15, 12:15

Note that this is part of your exam project, so it must be approved in order
for you to take the exam in June, and you may not work with others not in
your group. If it is late, it will not be accepted (though it could become the
assignment you redo). You may work in groups of two or three.

1. Consider bit commitments defined in the notes by Damg̊ard and Nielsen
which are secure under the RSA assumption (page 10). If a Prover
has created two such bit commitments, B1 and B2, to the same bit b,
she can prove that they are commitments to the same bit by opening
B1 ·B−1

2 (mod n) as a zero. If they are commitments to different bits,
she can prove that by opening B1 ·B2 as a one.

(a) Show that if the Prover created the two bit commitments, that she
will be able to do the computations require to do the appropriate
proof. Show this for all cases.

(b) Show that if she cannot find an x such that f(x) = y, then she
cannot use this method to prove that two commitments are to
different bits if they are commitments to the same bit, or to prove
that they are commitments to the same bit if they are commit-
ments to different bits.

(c) Show that doing some number, s, of proofs of equality, gives no
information as to whether all of the commitments were commit-
ments to zeros or commitments to ones. (Hint: Recall that for
any commitment, B, the Prover could have created it as either a
commitment to a zero or a commitment to a one.)

2. Suppose a Prover has made bit commitments, Bi = ybixq
i (mod n) for

i = 1, 2, ...,m = 2k + 1, and k ≥ 2, using the same scheme as above
(page 10 in the notes by Damg̊ard and Nielsen), and a majority (at
least k + 1) are commitments to ones. The Prover can give a zero-
knowledge proof of this to a Verifier by executing the following log2 n
times:
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Prover Verifier

Choose random r1, r2, ..., rm.
Set B′

i = ybirq
i (mod n), 1 ≤

i ≤ m.
Choose a random permutation
σ of 1..m. B′

σ(1), B
′
σ(2), ..., B

′
σ(m)-

Choose a random bit c.

c�

If c = 0, compute Oi = xi ·r−1
i ,

1 ≤ i ≤ m. σ, O1, O2, ..., Om-

If c = 1, choose randomly k+1
of the B′

i which have bi = 1:
Bi1 , Bi2 , ..., Bik+1

. ri1 , ri2 , ..., rik+1-

Check the conditions below.
Accept if OK.
Otherwise reject.

The check the Verifier does is:
If c = 0, use σ to find the B′

i, and check that Bi · (B′
i)
−1 ≡ Oq

i (mod n),
for 1 ≤ i ≤ m.
If c = 1, check that y · rq

ij
≡ B′

ij
(mod n) for 1 ≤ j ≤ k + 1.

(a) Prove completeness for the above protocol, showing that if the
Prover has created the m bits so that the majority are commit-
ments to ones, and if both the Prover and the Verified follow the
protocol, then the Verifier rejects with negligible probability.

(b) Prove soundness for the above protocol. Assume that the Prover
cannot find an x such that y ≡ xq (mod n) and that at most k of
the original B1, B2, ..., Bm were created as commitments to ones.
Show that the probability that the Verifier accepts if it follows its

5



protocol is negligible.

(c) Prove that the above protocol is perfect zero-knowledge.
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