Institut for Matematik og Datalogi March 11, 2008
Syddansk Universitet JFB

Cryptology — FO8 — Week 8

Lecture, March 7

We covered chapter 6.

Lecture, March 13

We will cover the McEliece Cryptosystem (copied from the earlier edition
of the textbook), introduce digital signatures from chapter 7, and start on
chapter 4 (skipping the subsection on the Merkle-Damgard construction).

Lecture, April 7

We will first cover SHA-256 and then cover the last two sections of chapter
4. Then we will return to chapter 7, covering up through section 7.4.2.

Lecture, April 11

We will begin on chapter 8.

Problem session April 10
1. Finish any problems from the last set which we haven’t finished.

2. Do problem 4.1 in the textbook. For part (d), use the fact that the
left-hand side in (c) is at least zero.

3. Do problem 4.6.

4. Do problem 4.12. For part (b), you can find a (1,1)-forger. Skip the
difficult case mentioned.



5. Let p be an odd prime and go and g; be generators of Z;. Consider the
following two functions: fo(x) = ¢§ (mod p) and fi(z) = ¢f (mod p).
Use these two functions to create a hash function which will hash an
arbitrary length message down to a value in Z7. Can you make it secure
under the assumption that the discrete log problem is infeasible?

6. Do problem 6.21 in the textbook.

7. Do problem 7.1 in the textbook. (You might want to look at the notes
on the course home page on number theory to recall how to solve linear
congruences. )

8. In the discussion of the Schnorr signature scheme on page 286, it
saysthat to find a gth root of 1 modulo p, one should begin with a
primitive element aq of Z and compute a(()p —Via, (Recall that p and ¢
are both primes.)

a. Why is this correct? What subgroup does the result generate?
b. How long does it take to do this computation?

c. Is it necessary that ag be a primitive element?

Assignment due Thursday, April 17, 12:15

Note that this is part of your exam project, so it must be approved in order
for you to take the exam in June, and you may not work with others not in
your group. If it is late, it will not be accepted (though it could become the
assignment you redo). You may work in groups of two or three.

A slightly different (from the one I presented in class) version of the poly-
nomial time test for primality is given in the paper by the original authors,
which can be found at:

http://www.cse.iitk.ac.in/users/manindra/algebra/primality v6.pdf.

Write a program which implements this algorithm and compare the perfor-
mance of the algorithm to that of the Miller-Rabin primality test. In your
report, include a brief explanation of some of the intuition behind the algo-
rithm (not a complete proof of correctness) and an explanation of how you
implemented the various parts of the algorithm. Explain how you did your
testing (comparison to Miller-Rabin) and the results you obtained.

2


http://www.cse.iitk.ac.in/users/manindra/algebra/primality_v6.pdf

To deal with the long numbers necessary, you may use Java, there is a class in
java.math called BigInteger which should be efficient and easy to use. There
is documentation available at

http://java.sun.com/javase/6/docs/api/.

You may use the standard methods provided there.

Please turn in your program, some output and a report. You should send me
your program and any extra files via e-mail (they can just be attachments
in pine). But, in addition to the e-mail, I would like printed copies of
everything.

If you prefer another language to Java, please come talk with me by Monday,
April 7 (preferably earlier).


http://java.sun.com/javase/6/docs/api/

