Institut for Matematik og Datalogi March 22, 2011
Syddansk Universitet JFB

Cryptology — F11 — Week 8

Announcement

I have graded your second assignment.

Lecture, March 15

We finished with chapter 4, skipping the subsection on the Merkle-Damgard
construction. We covered SHA-256 and then the last two sections of chapter
4. Then we returned to chapter 7, covering up through section 7.4.2.

Lecture, April 4

We will discuss subliminal channels and begin on chapter 8, covering up
through section 8.2 and section 8.4.

Lecture, April 7

We will cover sections 8.3 and 7.6 (the latter from some notes).

Problem session April 11

1. Do problem 4.12. For part (b), you can find a (1,1)-forger. Skip the
difficult case mentioned.

2. Let p be an odd prime and go and g; be generators of Z;. Consider the
following two functions: fo(x) = ¢§ (mod p) and fi(x) = ¢f (mod p).
Use these two functions to create a hash function which will hash an
arbitrary length message down to a value in Z7. Can you make it secure
under the assumption that the discrete log problem is infeasible?



3. Do problem 6.21 in the textbook.

4. Do problem 7.1 in the textbook. (You might want to look at the notes
on the course home page on number theory to recall how to solve linear
congruences. )

5. In the discussion of the Schnorr signature scheme on page 286, it says
that to find a gth root of 1 modulo p, one should begin with a primitive
element g of Z; and compute a(()p —b/a, (Recall that p and ¢ are both
primes.)

a. Why is this correct? What subgroup does the result generate?
b. How long does it take to do this computation?

c. Is it necessary that ag be a primitive element?

Assignment due Wednesday, April 27, 14:15

Note that this is part of your exam project, so it must be approved in order
for you to take the exam in June, and you may not work with others not in
your group. If it is late, it will not be accepted (though it could become the
assignment you redo). You may work in groups of two or three.

Write a program which implements part of the index calculus algorithm for
finding discrete logarithms modulo a prime. Your program should create
congruences such as those in section 6.2.4 of the textbook with

Your program should also choose primes of different lengths at random (see
the Java class Biglnteger) and make sure that you have a generator.

Recall that one can find a prime p where p — 1 is factored by first choosing
the factors of p — 1 and then checking if p is prime. A reasonable way to do
this is to first choose the length of p — 1. Then randomly choose the length
of the first prime factor (between 2 and the length of p — 1 minus 1. Find a
prime p; of this length. This determines the length of (p — 1)/p;. Continue,
randomly finding factors of this.

You should test your program using different size factor bases and different
size primes. There should be a trade-off here.



To deal with the long numbers necessary, you may use Java, there is a class in
java.math called BigInteger which should be efficient and easy to use. There
is documentation available at

http://java.sun.com/javase/6/docs/ api/.

You may use the standard methods provided there.

Please turn in your program, some output and a report. You should send me
your program and any extra files via e-mail (they can just be attachments in
pine).

If you prefer another language to Java, please come talk with me by Thursday,
April 7 (preferably earlier).


http://java.sun.com/javase/6/docs/api/

