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Cryptology – F13 – Week 4

Lecture, February 11

We covered most of chapter 3 in the textbook, skipping most of the first four
sections. The original Rijndael specification (which can be found through
the course’s homepage) was used as the basis for the description of AES.

Lecture, February 18

We briefly covered differential and linear cryptanalysis, plus modes of opera-
tion for block cyphers from chapter 3 in the textbook. We began on chapter
5 in the textbook, skipping the Extended Euclidean Algorithm. We cov-
ered RSA, except for showing how to find primes. We showed that factoring
was polynomial time equivalent to finding square roots modulo a composite
(though still need to show how to find square roots modulo primes or prime
powers).

Lecture, February 21

After discussing some problems, we continued with chapter 5, discussing
quadratic residues and nonresidues.

Lecture, February 22

We will continue with chapter 5, covering primality testing.

Lecture, February 28

We will begin on chapter 6.
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Problem session February 25

1. In the original description of Rijndael, it says that x4+1 (which is used
to create the matrix for the MixColumn operation) is not irreducible
over GF (28). What are its factors? Try the function Factor in Maple,
using mod 2. Check that the mod 2 makes a difference by also trying
to factor it with factor.

Check that x8 + x4 + x3 + x + 1 is irreducible over GF (2). Check the
multiplication done in the example in section 2.1.2 using the modpol

function in Maple.

Find the inverse of x7 + x5 + x3 + 1 modulo x8 + x4 + x3 + x+ 1. Try
the function powmod using the exponent −1. Check that your answer
is correct using modpol.

2. Why do you think x4 + 1 was used, rather than an irreducible polyno-
mial? Why are there no problems that it is not irreducible?

3. Check that the definition given for the polynomial d(x) in section 2.2
is correct (for multiplication). Try using powmod with the exponent 1
in Maple.

Similarly, check that the polynomial d(x) used in MixColumn in section
This problem is probably just about as easy to do by hand.

4. Find the inverse transformation for ByteSub in section 4.2.1. To find
the inverse modulo 2 of the matrix, you can use the Inverse function in
Maple. To create the matrix, you can use the function Matrix (in the
LinearAlgebra package, so you have to type with(LinearAlgebra);

first) and list the matrix row by row. For example, to create the matrix

A =

(

1 2
3 4

)

, you can type A:=Matrix([[1,2],[3,4]]);. To check

the result, you can multiply two matrices, A and B using C:=A.B;. To
reduce all the elements of the matrix modulo 2, you can use the Map

function, for example as Map(modp,C,2);.

5. Why doesn’t the last round of AES have the MixColumn operation?

6. Look at problems 5.3, 5.6, and 5.7 in the textbook. If you are at
all unsure of how to do them, please do them. Even if you are not
unsure, you might consider this an opportunity to try using Maple.
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The following Maple functions should be useful: igcdex (extended
Euclidean algorithm for integers), mod (where the operation &^ should
be used for more efficient modular exponentiation - try them both
to compare), msolve (solve equations in ZZm), and chrem (Chinese
Remainder Algorithm).

7. Another easy problem. Let n = 143 be a modulus for use in RSA.
Choose a public encryption exponent e and a private decryption ex-
ponent d which can be used with this modulus. Try encrypting and
decrypting some value to see that the exponents you have chosen work.

8. Suppose you as a cryptanalyst intercept the ciphertext C = 10 which
was encrypted using RSA with public key (n = 35, e = 5). What is the
plaintext M? How can you calculate it?

9. In an RSA system, the public key of a given user is (n = 3599, e = 31).
What is this user’s private key?

10. I may lecture at the end.

Problem session March 1

1. With RSA, there are often recommendations to use a public exponent
e = 3.

a. What would the advantage to this be?

b. If e = 3, the two prime factors dividing the modulus, p and q, must
be such that p ≡ q ≡ 2 (mod 3). Why is it impossible to have one or
both of p and q congruent to 0 or 1 modulo 3?

c. Suppose that e = 3, p = 3r + 2 and q = 3s + 2. What would the
decryption exponent d be?

2. Suppose the modulus used in RSA has 1024 bits. What is the unicity
distance of this RSA cryptosystem? Why?

3. Suppose that user A wants to send a message s ∈ {s1, s2, ..., sk} to user
B, where si < 1024 for 1 ≤ i ≤ k. Assume that RSA is secure (when
the modulus is large enough and is the product of two equal length
prime factors). a Why would you still advise user A not to use RSA
directly?
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b What would you recommend instead, if you still wanted to use RSA?

4. Show all steps in the calculations of the Jacobi symbol
(

29

35

)

, using
the standard algorithm (using the four properties of the Jacobi symbol
given in the textbook).

5. Show all steps of the execution of one call to the Solovay-Strassen
Primality Test, checking if 35 is prime. Assume that the random integer
a chosen is 19.

6. A Carmichael number is a composite integer n such that for all x ∈ Z∗

n
,

xn−1 ≡ 1 (mod n).

a Explain why the existence of Carmichael numbers (there are in fact
infinitely many of them) make primality testing more difficult.

b Explain why Carmichael numbers are easy to factor using interme-
diate calculations from the Miller–Rabin primality test.

c Show that 561 is a Carmichael number. Try to do it without explicitly
checking all elements of ZZ∗

561
.

7. Do problems 5.9 and 5.13 in the textbook.

8. I may lecture at the end.
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