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Cryptology – F13 – Week 5

Lecture, February 21

After discussing some problems, we continued with chapter 5, discussing
quadratic residues and nonresidues.

Lecture, February 22

We continued with chapter 5, covering primality testing (the Miller-Rabin al-
gorithm was covered in the problem session on February 25, and a polynomial
time primality test will be presented on February 28).

Lecture, February 28

We finished primality testing (the first polytime primality test was presented)
and the remainder of chapter 5.

Lecture, March 4

We will cover chapter 6 in the textbook.

Lecture, March 8

We will cover the McEliece Cryptosystem (copied from the earlier edition of
the textbook and sent to you via e-mail). You can look at Regev’s articles
in STOC ’05 and CRYPTO 06 for another system secure against quantum at-
tacks, and at Peikert’s papers on lattice-based systems: http://eprint.iacr.org.
Then we will introduce digital signatures from chapter 7, and start on chap-
ter 4, probably covering through section 4.2. A meet-in-the middle attack
will be demonstrated.
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Problem session March 7

1. Do problems 5.16 and 5.17 in the textbook.

2. Suppose n = 11, 820, 859 is an RSA modulus. Suppose you know
φ(n) = 11, 813, 904. Find the factors of n. Show your work. (You
may use Maple to solve the quadratic equation, but explain how you
used it.)

3. Find all square roots of 64 modulo 105.

4. Find a primitive element (generator) in the multiplicative group modulo
103 (ZZ∗

103) and show that it is a primitive element.

5. Consider the following proposal for a primality test for an integer n:
Check if 2n−2 is divisible by n. Answer “prime” if it is and “composite”
if it is not.

a. Give an odd prime for which this test works correctly and an odd
composite for which it also works correctly.

b. Prove that the test answers “prime” for all primes.

c. Show that it answers “prime” incorrectly for n = 341. Use Fer-
mat’s Little Theorem to compute 2341 (mod p) for each prime
factor of 341. Then use the Chinese Remainder Theorem, to com-
pute 2341 (mod 341).

6. Suppose the Solovay-Strassen Primality Test is used to find the primes p
and q for use in the RSA cryptosystem. (Assume that random integers
of the required length are chosen and tested for primality until two are
found where the test does not discover that they are composite.) Even
assuming that the primality test is executed several times, there is still
a small probability of choosing a number which is not prime. Suppose
the p chosen is prime, but q is not.

a. Suppose q is a Carmichael number. (Recall that a Carmichael

number is a composite integer n such that for all x ∈ Z∗

n, xn−1
≡

1 (mod n).) Would encryption and decryption still work properly?
Prove your answer. (Hint: try using the Chinese Remainder Theorem.)
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b. Suppose q is a not a Carmichael number. Would encryption and
decryption still work properly? Prove your answer. (Hint: try using
the Chinese Remainder Theorem.)

c. What other problem could exist if q is a composite number?

7. I may lecture at the end.

Assignment due Friday, March 22, 10:00

Note that this is part of your exam project, so it must be approved in order
for you to take the exam in June, and you may not work with others not
in your group. If it is late, it will not be accepted (though it could become
the assignment you redo). You may work in groups of two (or three). Turn
in the assignment through the SDU Assignment system in Blackboard, and
remember to keep your receipt. Turn in one PDF file per group.

1. Suppose that two parties, Alice and Bob, possess integers pA, qA and
pB, qB, and they have used a protocol to compute anN = (pA+pB)(qA+
qB), without revealing their own integers to the other party. Now they
use the following protocol (repeated many times) to check that N is
the product of two primes p ≡ 3 (mod 4) and q ≡ 3 (mod 4).

(a) Bob and Alice agree on a random g ∈ Z∗

N . (In practice, they could
alternate who chooses g, but do not worry about that.)

(b) Both players compute the Jacobi symbol
(

g
N

)

. If the result is not
1, they restart at step 1.

(c) Alice computes vA = g(N−pA−qA+1)/4 (mod N), and Bob vB =
g−(pB+qB)/4 (mod N). They exchange these values and check that
vAvB = ±1 (mod N). If this fails, then both parties output that
N is not product of two primes of the correct form. Otherwise
they output that N probably is the product of two primes of the
correct form.

i. Show that if N = pq, where p and q are both prime, p ≡ q ≡

3 (mod 4), p = pA + pB, and q = qA + qB, then both parties
will accept. Hint: Consider the Legendre symbols of g mod p

and g mod q.
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ii. Suppose that N = pq, where p and q are both prime, p ≡

3 (mod 4), q ≡ 1 (mod 4), p = pA + pB, and q = qA + qB.
Consider a value g which is a quadratic nonresidue modulo
both p and q. Will it pass this test? What does this say
about the probability of Alice and Bob incorrectly outputting
that N is the product of two primes of the correct form?

2. Consider the ElGamal Public-key Cryptosystem in Z∗

p .

(a) Suppose that Bob encrypted several messages, x1, x2, ..., xn, to
send to Alice using Alice’s public key, but used the same value k

in every encryption. Thus, the encryptions are

(αk, x1β
k), (αk, x2β

k), ..., (αk, xnβ
k),

where all operations are performed modulo p. Suppose that x5

was also sent to the eavesdropper, Eve. How can Eve determine
the other xi’s?

(b) Suppose that, instead of using the same value k, Bob used con-
secutive values of k. Thus, for some k the encryptions are

(αk, x1β
k), (αk+1, x2β

k+1), ..., (αk+n−1, xnβ
k+n−1),

where all operations are performed modulo p. How can Eve still
determine the other xi’s if she is sent x5?

3. Suppose that RSA is implemented using the public keys, N = 221 and
e = 77.

(a) While encrypting the plaintext 160, repeated squaring was used,
and the following results were obtained:

1602 mod 221 = 185
1604 mod 221 = 191
1608 mod 221 = 16
16016 mod 221 = 35
16032 mod 221 = 120
16064 mod 221 = 35
16072 mod 221 = 118
16076 mod 221 = 217
16077 mod 221 = 23
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The intermediate results which were obtained give a cryptanalyst
some very useful information for factoring the modulus. What
was so interesting? (Hint: Look at the results of the different
squarings.) Show how to use this information to factor 221.

(b) What is the decryption exponent d? Explain how you got that
result.

4. Show all steps in the calculations of the Jacobi symbol
(

34
77

)

, using
the standard algorithm (using the four properties of the Jacobi symbol
given in the textbook).

5. Suppose that a cryptanalyst discovered that some groups of companies
had the same public key for RSA and some groups of companies had
RSA keys which had exactly one factor in common. Suppose that these
companies had not planned for this to happen.

(a) How could it have happened anyway?

(b) Why is it a problem for these companies that it happened?

(c) Suppose that their RSA keys have length 1024 bits. What is
the (approximate) probability of two random RSA keys being the
same?
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