
Institut for Matematik og Datalogi
Syddansk Universitet

April 4, 2013
JFB

Cryptology – F13 – Week 7

Lecture, March 8

We covered the McEliece Cryptosystem. Then we introduced digital signa-
tures from chapter 7, and started on chapter 4, covering through section 4.2.
A meet-in-the middle attack was demonstrated.

Lecture, March 14

We finished chapter 4, skipping the subsection on the Merkle–Damg̊ard con-
struction. We also covered SHA-3, Keccak. See the course homepage for
Keccak’s specification. We covered up through section 7.2 of chapter 7 and
introduced the ElGamal signature scheme.

Lecture, April 8 – note at 12:15, not 10:15

We will finish through section 7.4.2 of chapter 7. We will discuss subliminal
channels and then begin on chapter 8.

Lecture, April 12

We will finish chapter 8, and possibly return to section 7.6, which we will do
from some notes.

Problem session April 11

We will continue first with those we didn’t finish on March 15, listed below.
We will also look at the problems from the last assignment.

1. Do problems 6.20 (work in the multiplicative group modulo 1103), and
6.22a in the textbook.

1



2. In class we have discussed the discrete logarithm problem modulo a
prime, which means that we have discussed them over fields of prime
order. There are also finite fields of prime power order, so for any prime
p and any exponent e ≥ 1, there is a field with q = pe elements, GF (q).
The elements of such a field can be represented by polynomials over
GF (p) of degree no more than e− 1. The operations can be performed
by working modulo an irreducible polynomial of degree e. For example,
y = x + x5 + x7 is an element of the field GF (210), represented by
GF (2)[x]/(x10 + x3 + 1). One can calculate a representation for y2,
by squaring y and then computing the result modulo x10 + x3 + 1, so
one gets x2 + 2x6 + 2x8 + x10 + 2x12 + x14 (mod x10 + x3 + 1) =
1 + x2 + x3 + x4 + x7. In Maple, you can use the powmod function to
do these calculations.

Try raising y to the powers e ∈ {33, 93, 341, 1023} to see what result
you get. What do you get? What does this prove about y?

3. On my computer using Mathematica (last time I tried), raising to the
power 1023 directly failed due to lack of memory. What does this say
about how Mathematica did the calculations? What can you do to get
around this problem when you try these calculations? (Maple has no
problems with these calculations.)

4. Why would there be a preference for working in GF (2k) for some large
k, rather than modulo a prime for some very large prime? Hint: think
about how arithmetic is performed.

5. Do problem 4.1 in the textbook. For part (d), use the fact that the
left-hand side in (c) is at least zero.

6. Do problem 4.6.

7. Do problem 4.12. For part (b), you can find a (1,1)-forger. Skip the
difficult case mentioned.

8. Let p be an odd prime and g0 and g1 be generators of Z
∗

p . Consider the
following two functions: f0(x) = gx0 (mod p) and f1(x) = gx1 (mod p).
Use these two functions to create a hash function which will hash an
arbitrary length message down to a value in Z∗

p . Can you make it secure
under the assumption that the discrete log problem is infeasible?

2



9. Do problem 6.21 in the textbook.

10. Do problem 7.1 in the textbook. (You might want to look at the notes
on the course home page on number theory to recall how to solve linear
congruences.)

11. In the discussion of the Schnorr signature scheme on page 293, it says
tha t to find a qth root of 1 modulo p, one should begin with a primitive
element α0 of Z∗

p and compute α
(p−1)/q
0 . (Recall that p and q are both

primes.)

a. Why is this correct? What subgroup does the result generate?

b. How long does it take to do this computation?

c. Is it necessary that α0 be a primitive element?

Assignment due Monday, April 29, 12:15

Note that this is part of your exam project, so it must be approved in order
for you to take the exam in June, and you may not work with others not in
your group. If it is late, it will not be accepted (though it could become the
assignment you redo). You may work in groups of two or three.

Write a program which implements the algorithm called Dixon’s Random
Squares Algorithm, in the textbook. (I called it Morrison-Brillhart/Dixon in
class.)

Test your program on numbers of different lengths, and check how your
experimental running time compares with the theoretical prediction. Write
efficient code.

To deal with the long numbers necessary, you may use Java. There is a
class in java.math called BigInteger which should be efficient and easy to
use. There is documentation available at

http://java.sun.com/javase/6/docs/api/.

You may use the standard methods provided there.

Please turn in your program, some output and a report. You should send me
your program and any extra files via e-mail (they can just be attachments).

Please tell me what language you will be using by Thursday, April 11.

3

http://java.sun.com/javase/6/docs/api/

