Institut for Matematik og Datalogi Syddansk Universitet October 25, 2016 JFB

Cryptology - E16 - Lecture 10

Lecture, October 11

We finished chapter 14 and began on section 11.4.

Lecture, October 24

We will cover figures 11.10 and 11.12, review RSA, cover subsections 1.3.5 through 1.3.9, and begin on chapters 2 and 15.

Lecture, October 26

We will continue with chapters 2 and 15.

Problem session October 25

- 1. Suppose you as a cryptanalyst intercept the ciphertext C = 10 which was encrypted using RSA with public key (n = 35, e = 5). What is the plaintext M? How can you calculate it? What is interesting about this public key?
- 2. In an RSA system, the public key of a given user is (n = 3599, e = 31). What is this user's private key?
- 3. With RSA, there have been recommendations to use a public exponent e = 3.
 - (a) What would the advantage to this be?
 - (b) If e = 3, the two prime factors dividing the modulus, p and q, must be such that $p \equiv q \equiv 2 \pmod{3}$. Why is it impossible to have one or both of p and q congruent to 0 or 1 modulo 3?

- (c) Suppose that e = 3, p = 3r + 2 and q = 3s + 2. What would the decryption exponent d be?
- (d) Check the calculations in the example in section 15.3.4 of the textbook.
- 4. Suppose the modulus used in RSA has 1024 bits. What is the unicity distance of this RSA cryptosystem? Why?
- 5. The proof of correctness (that decrypting gives the original message as the result) that I presented on my slides only held for messages in \mathbb{Z}_n^* . What happens with messages not in \mathbb{Z}_n^* and why?
- 6. Section 15.3.3 shows an attack on the use of a shared modulus. Suppose the shared modulus is 1763 and some user has sent the same message to two users, giving ciphertexts c1 = 511 and c2 = 1021.

Case 1: Let c1 = 165 and c2 = 196. What do you get? Is this correct? What happened?

Case 2: Let c1 = 952 and c2 = 196. What do you get? Is this correct? Think about what t2 is.

- 7. In the proof of Lemma 15.4, the adversary creates a ciphertext $c = 2^{e} \cdot c^*$ to be decrypted. For an random $m \in \mathbb{Z}_N^*$, it can choose $c = m^{e} \cdot c^*$ instead, giving a random ciphertext. What would it do then?
- 8. Suppose n = 11,820,859 is an RSA modulus. Suppose you know $\phi(n) = 11,813,904$. Find the factors of n. Show your work. (You may use Maple to solve the quadratic equation, but explain how you used it.) See section 15.3.2.
- 9. Suppose that p = 2q+1, where p and q are odd primes. Suppose further that $\alpha \in \mathbb{Z}_p^*$, $\alpha \not\equiv \pm 1 \pmod{p}$. Prove that α is a primitive element modulo p (generator) if and only if $\alpha^q \equiv -1 \pmod{p}$. (Problem 5.9 in CTP.)