Institut for Matematik og Datalogi Syddansk Universitet November 8, 2016 JFB

Cryptology - E16 - Lecture 11

Lecture, October 24

We covered figures 11.10 and 11.12, reviewed RSA, covered Rabin's encryption scheme (subsection 15.1.1), and covered subsections 1.3.5, 1.3.6 and 1.3.9 from chapter 1.

Lecture, October 26

We will cover subsections 1.3.7 and 1.3.8 and continue with chapters 2 and 15.

No class October 31 or November 1

My office hours on November 1 are also cancelled.

Lecture, November 7

We will begin on chapter 16.

Problem session November 2

- 1. Show all steps in an execution of Shank's algorithm to find a square root of 65 modulo 97. What is the other square root.
- 2. Show all steps in the calculations of the Jacobi symbol $\left(\frac{29}{35}\right)$, using the standard algorithm (using the four properties of the Legendre symbol given in the textbook).
- 3. The Solovay-Strassen algorithm for primality testing is as follows:

procedure Solovay-Strassen(n, k):

for j = 0 to k - 1 do Choose a random a such that $1 \le a \le n - 1$ $x \leftarrow \left(\frac{a}{n}\right)$ if x = 0 then return "Composite a" $y \leftarrow a^{(n-1)/2} \pmod{n}$ if $x \ne y$ then return "Composite a" return "Probable prime"

The algorithm answers "Probable prime" for primes.

Note that the loop is executed k times for a security parameter k. We will show that the error probability (probability of declaring a composite prime) is at most $(1/2)^k$. Define

$$G(n) = \{a \in \mathbb{Z}_n^* \mid \left(\frac{a}{n}\right) = a^{(n-1)/2} \pmod{n}\}$$

- (a) Prove that G(n) is a subgroup of \mathbb{Z}_n^* .
- (b) Suppose $n = p^{\ell}q$, where p and q are odd, p is prime, $\ell \ge 2$, and gcd(p,q) = 1. Let $a = 1 + p^{\ell-1}q$. Prove that

$$\left(\frac{a}{n}\right) \neq a^{(n-1)/2} \pmod{n}$$

Hint: Use the binomial theorem to compute $a^{(n-1)/2} \pmod{n}$.

(c) Suppose $n = p_1 \cdots p_s$, where the p_i 's are distinct odd primes. Suppose $a \equiv u \pmod{p_1}$ and $a \equiv 1 \pmod{p_2 p_3 \cdots p_s}$, where u is a quadratic non-residue modulo p_1 (note that such an a exists by the Chines Remainder Theorem). Prove that

$$\left(\frac{a}{n}\right) = -1 \pmod{n},$$

but

$$a^{(n-1)/2} \pmod{n} \equiv 1 \pmod{p_2 p_3 \cdots p_s}$$

 \mathbf{SO}

$$a^{(n-1)/2} \pmod{n} \neq -1 \pmod{n}$$

(d) If n is odd and composite, prove that $|G(n)| \leq (n-1)/2$, and conclude that the error probability is at most $(1/2)^k$.

(Problem 5.22 in CTP.)

4. Show all steps in one execution of the **for** loop in the Solovay-Strassen Primality Test, checking if 35 is prime. Assume that the random integer a chosen is 19.