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Cryptology – E16 – Lecture 15

Announcement

Vi har netop opsl̊aet instruktorater for for̊aret. Alle der er interesserede
opfordres til at søge. Det er skulle forklare stoffet for andre er en virkelig
god måde at øge sin egen forst̊aelse p̊a. Det gælder ikke blot det stof man
skal gennemg̊a (og derfor kunne godt), men gennem at man skal forklare for
andre, bliver man ogs̊a bedre til at finde ind til kernen i problemer og dermed
bliver man selv bedre til at studere. Fristen for at søge er 28/11 og opslaget
kan ses dels omkring p̊a IMADA samt via SDU ledige stillinger.

The deadline for applying for TA positions at IMADA is November 28.

Announcement

The next pizza meeting will be held starting at 16:00 in U163 on November
23.

Lecture, November 15

We continueed with chapter 16, covering up through section 16.5.2. We also
covered sections 4.1, 4.2, 4.3, and 4.5, with emphasis on curves of character-
istic p > 3.

Lecture, November 21

We will cover section 16.5.3 from chapter 16 and begin on chapter 19.

Lecture, November 28

We will begin on chapter 21.
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Problem session November 22

1. A common way to speed up RSA decryption incorporates the Chinese
remainder theorem, as follows. Suppose that dK(y) = yd (mod n) and
n = p ·q. Define dp = d (mod (p−1)) and dq = d (mod (q−1)); and let
Mp = q−1 (mod p) and Mq = p−1 (mod q). Then consider the following
algorithm:

Algorithm CRT-Optimized RSA Decryption(n, dp, dq,Mp,Mq, y)

xp ← ydp (mod p)
xq ← ydq (mod q)
x←Mpqxp + Mqpxq (mod n)
return(x)

This algorithm replaces an exponentiation modulo n by modular expo-
nentiations modulo p and q. If p and q are `-bit integers and exponenti-
ation muldulo an ` bin integer takes time c`3, then the time to perform
the required exponentiation(s) is reduced from c(2`)3 to 2c`3, a sav-
ings of 75%. The final step, involving the Chinese remainder theorem,
requires time O(`2) if dp, dq, Mp, and Mq have been pre-computed.

(a) Prove that the value x returned by the algorithm is, in fact,
yd (mod n).

(b) Given that p = 1511, q = 2003 and d = 1234577, compute dp, dq,
Mp, and Mq.

(c) Given the above values of p, q, and d, decrypt the ciphertext
y = 152702 using the algorithm.

(Problem 5.13 in CTP.)

2. Consider the ElGamal Public-key Cryptosystem in ZZ∗
p .

(a) Suppose that Bob encrypted several messages, x1, x2, ..., xn, to
send to Alice using Alice’s public key, but used the same value k
in every encryption. Thus, the encryptions are

(gk, x1h
k), (gk, x2h

k), ..., (gk, xnh
k),
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where all operations are performed modulo p. Suppose that x5

was also sent to the eavesdropper, Eve. How can Eve determine
the other xi’s?

(b) Suppose that, instead of using the same value k, Bob used con-
secutive values of k. Thus, for some k the encryptions are

(gk, x1h
k), (gk+1, x2h

k+1), ..., (gk+n−1, xnh
k+n−1),

where all operations are performed modulo p. How can Eve still
determine the other xi’s if she is sent x5?

3. Suppse that E is an elliptic curve defined over ZZp, where p > 3 is
prime. Suppose that the number of points in E is a prime q, P ∈ E,
and P 6= (O). Prove that the discrete logarithm logP (−P ) = q − 1.

4. Consider the “Naive” RSA Signature Scheme.

(a) Demonstrate an existential forgeability attack on the (naive) RSA
signature scheme, assuming that the adversary has seen signatures
on two different messages.

(b) If the adversary has only seen one signature, but is able to get
a signature on one more message of its choice, show how it can
perform selective forgeries.

5. In the Schnorr signature scheme, G is a public finite abelian group
generated by an element g of prime order q. How could you find such
a G and g if you wanted to work modulo some prime p. (Also what
relation do you need between q and p.)
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