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Cryptology – E16 – Lecture 17

Lecture, November 28

We continued with chapter 21 from the slides, covering up through the proof
that all problems in NP have zero-knowledge proofs, using the Graph 3-
Colorability problem. Commitment schemes from chapter 20 were also dis-
cussed, using the Goldwasser-Micali encryption scheme for bit commitment
as an example.

Lecture, December 5

We will continue with chapter 21.

Lecture, December 12

We will continue with chapter 21.

Problem session November 29

Last time we did not get to the last problem from some notes by Ivan
Damg̊ard, entitled “CPT Notes, Graph Non Zero-Knowledge for NP and
Exercises”. We will do it this time. I am also repeating the second to last
problem for reference.

1. Consider the Pedersen commitment scheme Ba(x) = hx · ga where the
commitments are only to bits, so x ∈ {0, 1}. Suppose a prover P has
committed to bits b1, b2 using commitments c1, c2, where b1 6= b2. Now
P wants to convince the verifier V that the bits are different. We claim
he can do this by sending to V a number s ∈ ZZp−1 such that c1c2 = hgs.
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• Show how an honest P can compute the required s, and argue
that the distribution of s is the same when (b1, b2) = (0, 1) as
when (b1, b2) = (1, 0). This means that V learns nothing except
that b1 6= b2.

• Argue that if P has in fact committed in c1, c2 to (0, 0) or (1, 1),
he cannot efficiently find s as above unless he can compute the
discrete logarithm of h.

• Argue in a similar way that P can convince V that she has commit-
ted to two bits that are equal by revealing s such that c1c

−1
2 = gs.

2. Assume P commits to two string b1, ..., bt, b
′
1, ..., b

′
t using commitments

c1, ..., ct, c
′
1, ..., c

′
t as in the previous exercise. She claims that the strings

are different and wants to convince V that this is the case while reveal-
ing no extra information. Note that he cannot point to an index j
where bj 6= b′j and use the above method on cj, c

′
j. This would reveal

where the strings are different. Instead consider the following protocol:

(a) P chooses a random permutation π on the set of indices {1, ..., t}.
She computes, for i = 1, ..., t a commitment di = C(bπ(i), ri) and
di = C(b′π(i), r

′
i). In other words, permute both strings randomly

with the same permutation and commit bit by bit to the resulting
strings. Send d1, ..., dt, d

′
1, ..., d

′
t to V .

(b) V chooses a random bit b and sends it to P .

(c) If b = 1, P reveals π and uses the above method to convince V
for all i that cπ(i) contains the same bit as di. Similarly for c′π(i)
and d′i. If b = 1, P finds a position i where bπ(i) 6= b′π(i) and uses
the above method to convince V that di, d

′
i contain different bits.

• Completeness: Argue that an honest prover always convinces the
verifier.

• Soundness: Show that if P can, for some set of commitments
d1, ..., dt, d

′
1, ..., d

′
r answer V correctly for both b = 0 and b = 1,

then there is at least one j, where P can open cj, c
′
j to reveal

different bits. Note that we assume she knows how to open the
commitments c1, ..., ct, c

′
1, ..., c

′
t. The protocol in this exercise does

not verify that P knows this — if one wants to check this, there
are other protocols one can use.
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• Zero-knowledge: Sketch a simulator for this protocol. Hint: given
commitment c, if you set d = cg−s (mod p), then cd−1 = gs (mod p).
This means that even if the simulator does not know how to open
c, it can create d and fake a proof that d contains the same bit as
c. You do not have to formally prove that your simulator works.

These are the new problems:

1. The Subgroup Membership Problem is as follows: Given a positive
integer n and two distinct elements α, β ∈ ZZ∗n, where the order of α
is l and is publicly known, determine if β is in the subgroup generated
by α.

Suppose that α, β, l, and n are given as input to a Prover and Verifier,
and that the Prover is also given k such that αk = β (mod n). Consider
the interactive protocol in which the following is repeated log2 n times:

Prover Verifier

Choose random 0 ≤ j ≤ l − 1.
Compute γ = αj (mod n). γ -

Choose a random
c ∈ {0, 1}.

c�

Compute h = j + ck (mod l).
h -

Check that
αh ≡ βcγ (mod n).
If not, reject and halt.

(a) Prove that the above protocol is an interactive proof system for
Subgroup Membership.

(b) Suppose that β is in the subgroup generated by α. Show that
the number of triples (γ, c, h) which the Verifier would accept is
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2l and that each such triple is generated with equal probability if
both the Prover and Verifier follow the protocol.

(c) Suppose that β is in the subgroup generated by α. What is the
distribution of the values γ, h sent by a Prover following the pro-
tocol?

(d) Prove that the above protocol is perfect zero-knowledge.

(e) If n is a prime, what value can you use for l? If n is not prime, is
it reasonable to make this value l known?

2. Give a zero-knowledge interactive proof system for the Subgroup Non-
membership Problem (showing that β is not in the subgroup generated
by α). Prove the your protocol is an interative proof system. Prove
that it is zero-knowledge. (Assume that you know a multiple of the
order of α.)

3. Let p = 4k + 3 be a prime, and let g and h be quadratic residues
modulo p. Assume that h is in the subgroup generated by g and that
the Prover knows an x such that gx = h (mod p). Suppose that p,
g, and h are given as input to a Prover and Verifier. Consider the
interactive protocol in which the following is repeated log2 p times:

Prover Verifier

Choose a random
k ∈ {1, ..., p−1

2
}.

Let z = h · g2k (mod p).
z -

Choose a random
b ∈ {0, 1}.

b�

Let r = 2k + b · x (mod p− 1).
r -
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Check that r is even,
z = grh1−b (mod p),
p (mod 4) = 3,

and g
p−1
2 = 1 (mod p).

If not, reject and halt.

(Actually, the last two checks only need to be done once and could be
done before the first round of the protocol. Don’t let their placement
here confuse you.)

(a) Prove that the above protocol is an interactive proof system show-
ing that h = g2y (mod p) for some integer y.

(b) Suppose that h = g2y (mod p) for some integer y. What is the
probability distribution of the values (z, r) sent by a Prover fol-
lowing the protocol?

(c) Prove that the above protocol is perfect zero-knowledge.

(d) Suppose p = 4k + 3. Note that any quadratic residue g modulo p
has odd order. Use this fact to show that if h is in the subgroup
generated by a quadratic residue g, then it is always possible to
write h as h = g2y (mod p) for some integer y. (Thus, the above
protocol is an alternative zero-knowledge proof of subgroup mem-
bership for this special case.)

(e) Suppose p = 4k + 3, g 6= 1 is a quadratic residue modulo p, and
q = p−1

2
= 2k+ 1 is a prime. Then, there is a more efficient secure

way, than using the above protocol, to convince the Verifier that
h = gy (mod p) for some integer y. What is it? (Hint: no Prover
is necessary.)
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