
Institut for Matematik og Datalogi
Syddansk Universitet

October 23, 2019
JFB

Cryptology – 2019 – Lecture 12

Announcements

1. All lectures on Thursdays will start at 16:10, instead of 16:15.

2. Lectures on Thursday, October 24, and Thursday, November 21, are
cancelled.

Lecture, October 22

We covered subsections 1.3.6 (Shank’s Algorithm for computing square roots
modulo a prime) and 1.3.9. I presented a proof of correctness for Shank’s
Algorithm, but discovered an error at the end of the proof of the second
invariant, despite the intuition being correct. A correct proof of correctness
is presented below. We also went over problems from the first assignment.

Lecture, October 29

We will cover sections 2.1-2.4.

Lecture, November 4

We will finish chapter 15, start on chapter 16, and cover section 3.1.

Problem session November 5

We will finish the problems not finished on October 31. If there is time, I
will lecture.

1



Proof of correctness of Shank’s Algorithm (Algorithm
1.3 in the textbook

The algorithm is proven correct by proving two loop invariants for the while
loop.

Invariant 1: x2 ≡ a · b (mod p)

Note that the while loop terminates when b ≡ 1 (mod p). Thus, if this
invariant holds and the loop terminates, the correct answer is returned, since
x is returned.

Proof of Invariant 1: The proof is by induction on the number of times
through the while loop. The base case is just before the loop is executed for
the first time. Then b ≡ a · x2 ≡ a · (a

q−1
2 )2 ≡ aq (mod p) and x is updated

to a · a q−1
2 (mod p), so x2 ≡ aq+1 (mod p) and x2 ≡ a · b (mod p). Thus, the

base case holds.

Suppose Invariant 1 holds at the start of an iteration of the while loop.
Let x′ be the new value of x and b′ be the new value of b computed in
this iteration. Then x′ ≡ x · t (mod p) and b′ ≡ b · t2 (mod p). Thus,
x′2 ≡ (x · t)2 ≡ x2 · t2 ≡ (a · b)t2 ≡ a · b′, where the induction hypothesis is
used in the third congruence. Thus, Invariant 1 holds for all iterations.

Invariant 2: b2
r−1 ≡ 1 (mod p) and y2

r−1 ≡ −1 (mod p).

Note that the while loop is not entered if b ≡ 1 (mod p). Thus, assuming
Invariant 2, r > 1 at the start, every time the the loop is entered.

Proof of Invariant 1: The proof is by induction on the number of times
through the while loop. The base case is just before the loop is executed for
the first time. Then 2r−1 = 2e−1. Since n is a quadratic nonresidue modulo
p, n

p−1
2 ≡ −1 (mod p). Then,

y2
r−1 ≡ (nq)2

e−1 ≡ n
p−1
2 ≡ −1 (mod p).

In addition, from the proof of Invariant 1, we know that b ≡ aq at this point,
so b2

r−1 ≡ (aq)2
e−1 ≡ a

p−1
2 ≡ 1, since a is a quadratic residue. Thus, the base

case holds. Suppose Invariant 2 holds at the start of an iteration of the while
loop. Let y′ be the new value of y and b′ be the new value of b computed
in this iteration. Then, b′ ≡ b · t2 (mod p) ≡ b′ · y′ (mod p). Note that the
value of m is chosen to be the smallest integer such that b2

m ≡ 1 (mod p).
This means that if m− 1 ≥ 0 (and otherwise the loop is not executed again,
so there is nothing to be proven), then b2

m−1 ≡ −1 (mod p), since it is

2



square root of 1, but not equal to 1. We know that m < r since inductively
b2

r−1 ≡ 1 (mod p). Thus, the calculation t ≡ y2
r−m−1

(mod p) makes sense.
Then, y′ ≡ t2 ≡ y2

r−m
(mod p), and y′2

m−1 ≡ y2
r−1 ≡ −1 (mod p), where

the last congruence holds by the induction hypothesis. Since r is updated to
have the value m, y2

r−1 ≡ −1 (mod p) holds inductively. Then,

b′2
r−1 ≡ (b · y′)2m−1 ≡ b2

m−1 · y′2m−1 ≡ (−1) · (−1) ≡ 1 (mod p).

Thus, Invariant 2 holds by induction.

This concludes the proof. Note that since r is updated to m < r each time
through the while loop and 1 ≤ r ≤ e at the start of each iteration, the loop
is executed at most e ≤ log2(p − 1) times, and the algorithm is polynomial
time. (Remember that fast modulo eponentiation is used everywhere.)

3


