Institut for Matematik og Datalogi November 15, 2019
Syddansk Universitet JFB

Cryptology — 2019 — Lecture 15

Announcements
1. All lectures on Thursdays will start at 16:10, instead of 16:15.
2. Lecture on Thursday, November 21, is cancelled.
3. The next pizza meeting will be held starting at 16:00 on November 18.

4. The deadline for applications for TAships at IMADA for spring is
November 21:

https://www.sdu.dk/da/service/ledige_stillinger/1071043

Lecture, November 11

We started on chapter 16, covering section 16.1.1 on the Goldwasser-Micali
cryptosystem. We also introduced the discrete logarithm problem in Z7,
including the Pohlig-Hellman algorithm from section 3.2. The are slides on
the course homepage.

Lecture, November 14

We will continue with chapter 16 and section 3.1, covering the El Gamal
cryptosystem. We will also cover subsection 11.7.2 section 15.2 and subsec-
tions 18.4.2 and 18.4.3. covering up through section 16.5, and cover sections
4.1, 4.2, 4.3, and 4.5, with emphasis on curves of characteristic p > 3.

Lecture, November 19

We will continue with chapter 16, covering up through section 16.5.3. We
may begin on chapter 19.


https://www.sdu.dk/da/service/ledige_stillinger/1071043

Problem session November 18

We will finish any problems not finished on November 12.

1. A common way to speed up RSA decryption incorporates the Chinese
Remainder Theorem, as follows. Suppose that di(y) = y? (mod n)
and n = pq. Define d,, = d (mod p—1) and d, = d (mod g — 1); and let
M, = ¢! (mod p) and M, = p~! (mod ¢). Then consider the following
algorithm:

Algorithm CRT-Optimized RSA Decryption(n, d,, d,, M,, M,,
y)

z, < y% (mod p)

T, < y% (mod q)

x < Myqx, + M,pz, (mod n)

return(z)

This algorithm replaces an exponentiation modulo n by modular expo-
nentiations modulo p and ¢. If p and ¢ are ¢-bit integers and exponenti-
ation muldulo an ¢ bit integer takes time c¢f3, then the time to perform
the required exponentiation(s) is reduced from c(2¢)® to 2¢f3, a sav-
ings of 75%. The final step, involving the Chinese remainder theorem,
requires time O(¢?) if d,, d,, M,, and M, have been pre-computed.

(a) Prove that the value x returned by the algorithm is, in fact,
y? (mod n).

(b) Given that p = 1511, ¢ = 2003 and d = 1234577, compute d,, d,,
M, and M,.

(¢) Given the above values of p, ¢, and d, decrypt the ciphertext
y = 152702 using the algorithm.

(Problem 5.13 in CTP.)
2. Consider the ElGamal Public-key Cryptosystem in Z.

(a) Suppose that Bob encrypted several messages, xi, 2, ..., T, tO
send to Alice using Alices public key, but used the same value k
in every encryption. Thus, the encryptions are

(g%, 215, (gF, 2oh®), ..., (g%, 2 k),
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where all operations are performed modulo p. Suppose that xj
was also sent to the eavesdropper, Eve. How can Eve determine
the other x;s?

(b) Suppose that, instead of using the same value k, Bob used con-
secutive values of k. Thus, for some k the encryptions are

(gk’ ‘Tlhk)a (gk+17 'T2hk+1), ceey <gk+n717 xnhk+nfl>,

where all operations are performed modulo p. How can Eve still
determine the other z;s if she is sent =57

3. Suppse that E is an elliptic curve defined over Z,, where p > 3 is
prime. Suppose that the number of points in E is a prime ¢, P € F,
and P # O. Prove that the discrete logarithm logp(—P) = ¢ — 1.

4. Consider the Naive RSA Signature Scheme.

(a) Demonstrate an existential forgeability attack on the (naive) RSA
signature scheme, assuming that the adversary has seen signatures
on two different messages.

(b) If the adversary has only seen one signature, but is able to get
a signature on one more message of its choice, show how it can
perform selective forgeries.

5. In the Schnorr signature scheme, GG is a public finite abelian group
generated by an element ¢ of prime order ¢. How could you find such
a G and g if you wanted to work modulo some prime p. (Also what
relation do you need between ¢ and p.)

6. I may lecture at the end.



