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Cryptology – 2019 – Lecture 16

Announcements

1. I am trying to move the remaining lectures on Thursdays to Mondays
and Tuesdays in December. In particular, the lecture on Thursday,
November 21, is cancelled.

2. The next pizza meeting will be held starting at 16:00 on November 18.

3. The deadline for applications for TAships at IMADA for spring is
November 21:

https://www.sdu.dk/da/service/ledige stillinger/1071043

Lecture, November 14

We continued with chapter 16 and section 3.1, covering the El Gamal cryp-
tosystem, mostly with the slides on the course homepage. We also covered
subsection 11.7.2, section 15.2 and subsections 18.4.2 and 18.4.3.

Lecture, November 19

We will cover sections 4.1, 4.2, 4.3, and 4.5 fairly quickly (from the slides),
with emphasis on curves of characteristic p > 3. We will continue with
chapter 16, covering up through section 16.5.3. We may begin on chapter 19.

Lecture, November 25

We will cover sections 19.1, 19.2.1, and 19.4 from chapter 19, plus enough
from section 19.3 to understand why Shamir’s threshold scheme works. We
will begin on protocols and zero-knowledge from the slides.
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Problem session November 26

We will finish the last problem from November 18. I may lecture some if we
have covered enough to do some of these problems.

1. Draw a diagram for the game demonstrating the security/insecurity of
secret sharing schemes.

2. Consider the Shamir secret sharing scheme with p = 31. Let the thresh-
old be t+ 1 = 3. Suppose the shares are:

• (1, f(1)) = (1,16)

• (2, f(2)) = (2,5)

• (3, f(3)) = (3,5)

which are distributed to the share recipients. Show how to compute
the secret.

The following problems are from some notes by Ivan Damg̊ard and Jesper
Buus Nielsen, entitled “Commitment Schemes and Zero-Knowledge Protocols
(2011)”.

1. Call a function f : N→ R polynomial in l if there exists a polynomial
p and constant l0 such that f(l) ≤ p(l) for all l > l0. A function
ε : N → R is negligible in l if for all polynomials p there exists a
constant lp such that ε(l) ≤ 1/p(l) for all l > lp.

(a) Prove that if ε and δ are negligible in l, then ε+ δ is negligible in
l.

(b) Prove that if ε is negligible in l and f is polynomial in l, then f · ε
is negligible in l.

2. The statistical distance, SD(P,Q), between two distributions, P and
Q, is defined in the textbook at the bottom of page 122. An equivalent
definition is:

SD(P,Q) =
1

2

∑
y

|P (y)−Q(y)|,

where P (y) (or Q(y)) is the probability P (or Q) assigns to y.
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Given two families of distributions, U and V , indexed by strings x, U
and V are statistically indistinguishable, written U ∼s V , if SD(Ux, Vx)
is negligible in the length of the string x. (U and V could be distribu-
tions of valid transcripts versus simulations, to prove statistical zero-
knowledge. For computational indistinguishability, any probabilistic
polynomial time distinguisher run on the two distributions would pro-
duce distributions as output which were statistically indistinguishable.)

Show that if U ∼s V and V ∼s W , then U ∼s W .

3. Note that commitment schemes C(x, r) depend on a random value r.
Prove that a commitment scheme which is information theoretically
binding, but does not depend on the random input r, cannot be even
computationally concealing.

Say that a commitment scheme is g-randomized if it only depends on
the first g bits of r. If a commitment scheme is information theoreti-
cally binding, and log `-randomized (where ` is the length of r and the
security parameter), can it be computationally concealing? What if we
replace log ` by c log ` for a constant c? or by (log `)c?

The following problems are from some notes by Ivan Damg̊ard , entitled
“CPT Notes, Graph Non Zero-Knowledge for NP and Exercises”.

1. Consider the Pedersen commitment scheme Ba(x) = hx · ga where the
commitments are only to bits, so x ∈ {0, 1}. Suppose a prover P has
committed to bits b1, b2 using commitments c1, c2, where b1 6= b2. Now
P wants to convince the verifier V that the bits are different. We claim
he can do this by sending to V a number s ∈ ZZp−1 such that c1c2 = hgs.

• Show how an honest P can compute the required s, and argue
that the distribution of s is the same when (b1, b2) = (0, 1) as
when (b1, b2) = (1, 0). This means that V learns nothing except
that b1 6= b2.

• Argue that if P has in fact committed in c1, c2 to (0, 0) or (1, 1),
he cannot efficiently find s as above unless he can compute the
discrete logarithm of h.

• Argue in a similar way that P can convince V that she has commit-
ted to two bits that are equal by revealing s such that c1c

−1
2 = gs.
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2. Assume P commits to two string b1, ..., bt, b
′
1, ..., b

′
t using commitments

c1, ..., ct, c
′
1, ..., c

′
t as in the previous exercise. She claims that the strings

are different and wants to convince V that this is the case while reveal-
ing no extra information. Note that he cannot point to an index j
where bj 6= b′j and use the above method on cj, c

′
j. This would reveal

where the strings are different. Instead consider the following protocol:

(a) P chooses a random permutation π on the set of indices {1, ..., t}.
She computes, for i = 1, ..., t a commitment di = C(bπ(i), ri) and
di = C(b′π(i), r

′
i). In other words, permute both strings randomly

with the same permutation and commit bit by bit to the resulting
strings. Send d1, ..., dt, d

′
1, ..., d

′
t to V .

(b) V chooses a random bit b and sends it to P .

(c) If b = 1, P reveals π and uses the above method to convince V
for all i that cπ(i) contains the same bit as di. Similarly for c′π(i)
and d′i. If b = 1, P finds a position i where bπ(i) 6= b′π(i) and uses
the above method to convince V that di, d

′
i contain different bits.

• Completeness: Argue that an honest prover always convinces the
verifier.

• Soundness: Show that if P can, for some set of commitments
d1, ..., dt, d

′
1, ..., d

′
r answer V correctly for both b = 0 and b = 1,

then there is at least one j, where P can open cj, c
′
j to reveal

different bits. Note that we assume she knows how to open the
commitments c1, ..., ct, c

′
1, ..., c

′
t. The protocol in this exercise does

not verify that P knows this — if one wants to check this, there
are other protocols one can use.

• Zero-knowledge: Sketch a simulator for this protocol. Hint: given
commitment c, if you set d = cg−s (mod p), then cd−1 = gs (mod p).
This means that even if the simulator does not know how to open
c, it can create d and fake a proof that d contains the same bit as
c. You do not have to formally prove that your simulator works.

3. Let n be the product of two large primes, p and q, where p ≡ 1 (mod 3),
and let y ∈ ZZ∗n. Suppose the Prover knows x such that x3 ≡ y (mod n).
The Prover convinces the Verifier that there exists an x satisfying x3 ≡
y (mod n) by repeating the following protocol dlog2 ne times:
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Prover Verifier

Choose random u ∈ ZZ∗n. Let
v ≡ u3 (mod n).

v -

Choose a random c ∈ {0, 1}.

c�

Let z = u · xc (mod n).
z -

Check that z3 ≡ v ·yc (mod n).
If so, continue.
Otherwise, reject.

The Verifier accepts if it has not rejected in any round.

a. Prove that the above protocol is an interactive proof system.

b. Prove that the above protocol is perfect zero-knowledge.
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