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Algebra

The definition of a group

Def. A group is a set G closed under a binary

operation � such that

• Associative Law:

∀x, y, z ∈ G, x� (y � z) = (x� y)� z.

• Identity: ∃e ∈ G, the identity:

∀x ∈ G, e� x = x� e = x.

• Inverse:

∀x ∈ G, ∃y ∈ G s.t. x� y = y � x = e.

y = x−1 is the inverse of x.

Examples: The integers ZZ, the reals IR, and

the rationals IQ are groups under addition.

Example: IR− {0} under multiplication.
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Def. For finite groups, the number of

elements in a group G, written |G|, is the order

of the group.

Example: ZZn, the integers modulo n, under

addition. The order of ZZn is n.

Example: ZZ∗n, the positive integers less than

n which are relatively prime to n, under

multiplication. The order of ZZ∗n is φ(n), where

φ is the Euler φ-function.

The above examples are all abelian groups —

the operation is commutative: x � y = y � x
for all x, y in the group.

Not all groups are abelian.
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Example: Sn, the symmetric group on n

letters, is the set of permutations of the set

{1,2, ..., n}.
Sn is not an abelian group.

Any permutation can be written as a product

of cycles.

A transposition is a cycle of length 2, (ij). A

permutation is even iff it can be expressed as a

product of an even number of transpositions.

The symmetric group of a set X is Sym(X).
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Subgroups

Def. Let G be a group, and H ⊆ G.

H is a subgroup of G if H itself is a group w.r.t.

the operation in G (H ≤ G). The order of a

subgroup is its cardinality.

Suppose G is a group and H ⊆ G. Then H is

a subgroup of G iff the following hold:

• ∀x, y ∈ H, x� y ∈ H.

(H is closed under the group operation.)

• The identity is in H.

• ∀x ∈ H, x−1 ∈ H.

Example: Any group is a subgroup of itself.

Example: If e is the identity in G, {e} is a

subgroup of G.
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Example: The even integers are a subgroup

of the integers under addition.

Example:

{(
1 2 3 4 5
1 2 3 4 5

)
,

(
1 2 3 4 5
2 1 4 3 5

)}
is a subgroup of S5.

Example: An, the set of all even

permutations on n letters, is a subgroup of Sn.

It is called the alternating group on n letters.

Example: The set {0,5,10} is a subgroup of

ZZ15 under addition.

Example: The set {1,2,4} is a subgroup of

ZZ∗7.

Thm. Suppose S is a nonempty collection of

subgroups of a group G. Let H ′ =
⋂
H∈SH.

Then H ′ is a subgroup of G.
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Generators

Def. Let H be a subset of a group G, and

let S be the collection of all subgroups of G

which contain H. Then, <H>=
⋂
G′∈S G

′ is

the subgroup generated by H.

H ⊆ G.

<H>= {h1� h2� ...� hn | hi or h−1
i ∈ H ∀i}.

Def. A group or subgroup is said to be cyclic

if it is generated by a single element.

Such an element is a generator or

primitive element.

Def. The order of an element of a group

G is the order of the subgroup that element

generates.
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Thm. Suppose G is a group with identity e,

and g ∈ G has finite order m. Then m is the

least positive integer such that gm = e.

Example: The set {2} generates the

subgroup {1,2,4} of ZZ∗7.

Thus, it is a cyclic subgroup.

The order of the element 2 is 3.

The set {3} generates all of ZZ∗7,

so it is a cyclic group.

Fact. ZZ∗p is cyclic whenever p is prime.
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Lagrange’s Theorem

Def. Let H ≤ G, x ∈ G. Hx = {h� x | h ∈ H}
is a right coset of H in G.

Lemma Let H ≤ G. All right cosets of H

contain |H| elements.

The relation R =

{(a, b) | a and b are in the same right coset of H}
is an equivalence relation.

Lemma Let H be a subgroup of G, x, y ∈ G.

Then either Hx = Hy or Hx ∩Hy = ∅.

These two lemmas tell us that the group G

must be a disjoint union of right cosets of any

subgroup H, all of which have the same size.
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Thm. [Lagrange] If G is a finite group and

H ≤ G, then the order of H divides the order

of G.

Corollary Let G be a finite group and g ∈ G.

The order of the element g divides the order

of the group G.

Corollary Suppose |G| = n and g ∈ G. Then

gn = e, where e is the identity in G.

Pf. Let s be the order of the subgroup

generated by g. By a previous theorem,

gs = e, where e is the identity. By Lagrange’s

Theorem, s divides n, so there is an integer

c such that n = sc. Note that gn = gsc =

(gs)c = ec = e, so the corollary follows. 2

Thm. [Fermat’s Little Theorem] If p is prime

and a is an integer not divisible by p, then

ap−1 ≡ 1 (mod p).

+ 9



+ +

Using this same group theory, we can show

that encryption with RSA, followed by decryp-

tion with RSA yields the original message, if

the message is less than n and relatively prime

to n.

n = pq where p and q are large primes.

|ZZ∗n| = φ(n) = (p− 1)(q − 1).

If the message M is less than n and relatively

prime to n, M ∈ ZZ∗n.

ed ≡ 1 (mod (p− 1)(q − 1)),

so ∃k ∈ ZZ s.t. ed = 1 + k(p− 1)(q − 1).

If C ≡ Me (mod n), then Cd ≡ (Me)d ≡
Med ≡ M1+k(p−1)(q−1) ≡ M ·Mk(p−1)(q−1) ≡
M · (Mφ(n))k ≡M · 1k ≡M (mod n).
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Rings and fields

Def. A ring is a set R closed under two binary

operations + and • s.t.

• R1. R is an abelian group with respect to

the operation +.

• R2. The operation • is associative.

• R3. [Distributive Laws] ∀x, y, z ∈ R, the

following hold:

x • (y + z) = x • y + x • z
(y + z) • x = y • x+ z • x

The first operation + is called addition and

the second operation • is called multiplication.
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Example: {0} is the trivial ring.

0 + 0 = 0 and 0 • 0 = 0.

A nontrivial ring is a ring with more than one

element.

The identity element with respect to addition

is called zero, and all other elements are called

nonzero elements.

If the ring R has an identity element i with

respect to multiplication, then for all x ∈ G,

i • x = x • i = x, and R is said to be a ring

with identity. This identity is denoted by 1.

The ring R is commutative if for all x, y ∈ R,

x • y = y • x.

Examples: ZZ and IR are both commutative

rings with identity.
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Def. A field is a nontrivial commutative ring

with identity in which every nonzero element

has a multiplicative inverse.

Examples: IR is a field and IQ is a field, but

ZZ is not.

Example: ZZn is a field when n is prime. It is

a ring when n is composite, but not a field.
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