Algebra
T he definition of a group

Def. A group is a set G closed under a binary
operation » such that

e Associative Law:
Vr,y,2€ G, 20 (y0Oz) =(z0y) O 2.

e Identity: de € (G, the identity:
Vee G, eOQrx=x0Oe=ux.

e Inverse:
Vre G, JyeGst.z20Q0y=yOx =ce.
y =z~ 1 is the inverse of .

Examples: The integers Z, the reals IR, and
the rationals @ are groups under addition.

Example: IR — {0} under multiplication.
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Def. For finite groups, the number of
elements in a group G, written |G|, is the order
of the group.

Example: Z,,, the integers modulo n, under
addition. The order of Z,, is n.

Example: Z7, the positive integers less than
n which are relatively prime to n, under
multiplication. The order of Z is ¢(n), where
¢ is the Euler ¢-function.

The above examples are all abelian groups —
the operation is commutative: x Oy =y O«
for all z,y in the group.

Not all groups are abelian.



Example: S, the symmetric group on n
letters, is the set of permutations of the set
{1,2,...,n}.

Sn, IS not an abelian group.

Any permutation can be written as a product
of cycles.

A transposition is a cycle of length 2, (ij). A
permutation is even iff it can be expressed as a
product of an even number of transpositions.

The symmetric group of a set X is Sym(X).



Subgroups

Def. Let G be a group, and H C G.

H is a subgroup of G if H itself is a group w.r.t.
the operation in G (H < G). The order of a
subgroup is its cardinality.

Suppose GG is a group and H C G. Then H is
a subgroup of G iff the following hold:

o Vx,ye H, 0Oy e H.
(H is closed under the group operation.)

e [ he identity is in H.
eVxcH zlcH.

Example: Any group is a subgroup of itself.

Example: If e is the identity in G, {e} is a
subgroup of G.
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Example: The even integers are a subgroup
of the integers under addition.

Evamole: [[1 2345 12345
ple: 12345)'\2143¢5

IS a subgroup of Ss.

Example: A,,, the set of all even
permutations on n letters, is a subgroup of S,,.
It is called the alternating group on n letters.

Example: The set {0,5,10} is a subgroup of
Z15 under addition.

Example: The set {1,2,4} is a subgroup of
Z3.

Thm. Suppose S is a nonempty collection of
subgroups of a group G. Let H' = Nyeg H.
Then H' is a subgroup of G.



Generators

Def. Let H be a subset of a group &, and
let S be the collection of all subgroups of GG
which contain H. Then, <H>= NgcgG is
the subgroup generated by H.

HCQG.
<H>={h1 Ohy®...@hy | hj or h; 1 € H Vi}.

Def. A group or subgroup is said to be cyclic
if it is generated by a single element.

Such an element is a generator or

primitive element.

Def. The order of an element of a group
GG is the order of the subgroup that element
generates.



Thm. Suppose & is a group with identity e,
and g € G has finite order m. Then m is the
least positive integer such that ¢ = e.

Example: The set {2} generates the
subgroup {1,2,4} of Z3.

Thus, it is a cyclic subgroup.

The order of the element 2 is 3.

The set {3} generates all of Z3,

SO it is a cyclic group.

Fact. Z; is cyclic whenever p is prime.



Lagrange’s T heorem

Def. Let H< G, z€G. Hrt={hOzxz | he H}
IS a right coset of H in G.

Lemma Let H < G. All right cosets of H
contain |H| elements.

The relation R =
{(a,b) | @ and b are in the same right coset of H}
IS an equivalence relation.

Lemma Let H be a subgroup of G, x,y € G.
Then either Hx = Hy or Hx N Hy = 0.

These two lemmas tell us that the group G
must be a disjoint union of right cosets of any
subgroup H, all of which have the same size.
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Thm. [Lagrange] If G is a finite group and
H < G, then the order of H divides the order
of G.

Corollary Let G be a finite group and g € G.
The order of the element g divides the order
of the group G.

Corollary Suppose |G| =n and g € G. Then
gt = e, where e is the identity in G.

Pf. Let s be the order of the subgroup
generated by g. By a previous theorem,

g® = e, where e is the identity. By Lagrange’s
Theorem, s divides n, so there is an integer
c such that n = sc. Note that ¢" = ¢°¢ =
(g%)¢ = e® = ¢, so the corollary follows. O

Thm. [Fermat’'s Little Theorem] If p is prime
and a is an integer not divisible by p, then
a?~1=1 (mod p).



Using this same group theory, we can show
that encryption with RSA, followed by decryp-
tion with RSA vyields the original message, if
the message is less than n and relatively prime
to n.

n = pqg where p and ¢ are large primes.

Zy) = ¢(n) = (p—1)(¢—1).

If the message M is less than n and relatively
prime to n, M € Z.

ed=1 (mod (p—1)(¢g—1)),

sodke Z st.ed=14+k(p—1)(g—1).

If C = M¢ (modn), then C% = (M¢)? =
Med = ppltk(e—1)0@-1) = pr. p(e—1D(e-1) =

M- (MPNYE = pro 1k =M (mod n).



Rings and fields

Def. A ring is a set R closed under two binary
operations 4+ and e s.t.

e R1. R is an abelian group with respect to
the operation +.

e R2. The operation e is associative.

e R3. [Distributive Laws] Vx,y,2z € R, the
following hold:

re(y+z) =zxzey+tzxzez
(y+z2)ex =yeoex+z2e0x

The first operation 4+ is called addition and
the second operation e is called multiplication.
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Example: {0} is the trivial ring.
O4+0=0and Oe 0 =0.

A nontrivial ring is a ring with more than one
element.

The identity element with respect to addition
IS called zero, and all other elements are called
nonzero elements.

If the ring R has an identity element 7 with
respect to multiplication, then for all z € G,
trex = x e = g, and R is said to be a ring
with identity. This identity is denoted by 1.

The ring R is commutative if for all z,y € R,

rey=1yecr.

Examples: Z and IR are both commutative
rings with identity.



Def. A field is a nontrivial commutative ring
with identity in which every nonzero element
has a multiplicative inverse.

Examples: IR is a field and @ is a field, but
Z i1s not.

Example: Z,, is a field when n is prime. It is
a ring when n is composite, but not a field.



