
Discrete Logarithm Problem in ZZ ∗p

Appears to be hard, similar to the Factoring Problem.
So we can use it in cryptosystems, as a one-way function.

DLP(p):
Given a large prime p, α, β ∈ ZZ ∗p .
Find x ∈ ZZp−1 such that β = αx (mod p).
x is the discrete logarithm of β w.r.t. α.
x = logα β (mod p)

Example: In ZZ ∗7 , 6 = log3 1 (mod 7), since 1 ≡ 36 (mod 7)

There is no discrete log of 3 w.r.t 1 in ZZ ∗7 .
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Discrete Logarithm Problem in ZZ ∗p

For DLP(p) to be difficult:

1. The order of α must be large.

Example: p − 1 has order 2 modulo p.
It is easy to find the discrete log of p − 1 or 1 w.r.t. p − 1.
Use brute force. How?

2. p must be large.
Again, use brute force.

3. p − 1 must have at least 1 large prime factor.
Use Pohlig-Hellman’s algorithm.
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Pohlig-Hellman’s Algorithm

Pohlig-Hellman(α, β, p)

Factor p − 1 =
∏k

i=1 p
ci
i

for i = 1 to k do
Compute xi = (logα β (mod p)) modulo pcii

endfor
Use Chinese Remainder Theorem to compute x modulo p − 1

s.t. x ≡ xi (mod pcii ) for 1 ≤ i ≤ k
return x

To compute x = log3 26 (mod 29):
p − 1 = 4 · 7
To compute x (mod 7): α′ = 328/7 = 23, β′ = 2628/7 = 23
Work in a subgroup of size 7. Get x ≡ 1 (mod 7).
More difficult when ci > 1, but x ≡ 3 (mod 4).
Thus, x ≡ 15 (mod 28).
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Index Calculus Method
Suppose α is a primitive element modulo p.

Index Calculus(α, β, p)

Choose a factor base F = {p1, p2, . . . , ps}
Find logα pi for all i :
Find random {x1, x2, . . . , xt} s.t. αxj (mod p) factors over F :

αxj = p
e1,j
1 p

e2,j
2 · · · pes,js , for integers ei ,j

xj = e1,j logα p1 + e2,j logα p2 + · · ·+ es,j logα ps (mod p-1)
Solve for the s unknowns logα pi in a linear system of congruences.
Find x = logα β:
repeat

Choose random r ∈ ZZp−1
until βαr (mod p) factors over F
Suppose βαr ≡ αx+r ≡ pe11 pe22 · · · pess (mod p)
return (−r + e1 logα p1 + e2 logα p2 + · · ·+ es logα ps (mod p-1))

Expected execution time: O(ec
√
ln p ln ln p)
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Index Calculus Method Example
To find discrete log of 23 w.r.t. 11 in ZZ ∗29:
Choose factor base {2, 3, 5}. 11x = 2, 11y = 3, 11z = 5 (mod 29).
Choose exponents randomly: 7, 15, 19.

117 (mod 29) ≡ 12 = 22 · 31 ≡ 112x · 11y
1115 (mod 29) ≡ 18 = 21 · 32 ≡ 11x · 112y

1119 (mod 29) ≡ 15 = 31 · 51 ≡ 11y · 11z

2x + y ≡ 7 (mod 28)
x + 2y ≡ 15 (mod 28)
y + z ≡ 19 (mod 28)

Subtracting twice first from second:
−3x ≡ 1 (mod 28), so x = 9
y ≡ −11 ≡ 17 (mod 28), so y = 17
z = 2

Try 1127 · 23 ≡ 10 ≡ 119 · 112 (mod 29)
Discrete log of 23 is 9+ 2− 27 (mod 28) ≡ 12
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Discrete Logarithm Algorithms

The Index Calculus Method works over ZZ ∗p since multiplication
over integers holds over ZZ ∗p if the result is less than p.

This does not necessarily work for other groups.

The best of the known general purpose algorithms for discrete
logarithms modulo a prime is the General Number Field Sieve.
Its expected execution time: O(ec(ln p(ln ln p)

2)1/3
)

Better than the O(ec
√
ln p ln ln p) for Index Calculus.

Also does not necessarily work for other groups.

There is a polynomial time quantum algorithm for discrete
logarithms.
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El Gamal Cryptosystem

With RSA, no two users should share the same prime.

With El Gamal, there are

Domain Parameters:
I large primes p, q, s.t. q | (p − 1)
I g ∈ ZZ ∗p of order q

g = r (p−1)/q (mod p) for some r ∈ ZZ ∗p
How do you check the order of g?
Check g 6= 1.
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El Gamal Cryptosystem
Keys: Easy to create from Domain Parameters
I PKA = h = g x (mod p)
I SKA = x ∈ {0, 1, . . . , q − 1}

Encryption of m ∈ 〈g〉:
I Choose random k ∈ {0, 1, . . . , q − 1}
I E (m, k,PKA) = (c1, c2) = (gk (mod p),m · hk (mod p))

Decryption of (c1, c2):
I m′ = c2 · (cx1 )−1 (mod p)

Correctness:

m′ ≡ c2 · (cx1 )−1

≡ (m · hk) · ((gk)x)−1

≡ m · (g x)k · (g xk)−1

≡ m (mod p)
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Security:
Suppose a cryptanalyst can compute discrete logarithms in 〈g〉.
How can the system be broken?
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Digital Signatures with RSA

Suppose Alice wants to sign a document m such that:
I No one else could forge her signature
I It is easy for others to verify her signature

Note m has arbitrary length.
RSA is used on fixed length messages.
Alice uses a cryptographically secure hash function h, such that:

I For any message m′, h(m′) has a fixed length (512 bits?)
I It is “hard” for anyone to find 2 messages (m1,m2) such that

h(m1) = h(m2).
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Digital Signatures with RSA
Then Alice “decrypts” h(m) with her secret RSA key (NA, dA)

s = (h(m))dA (mod NA)

Bob verifies her signature using her public RSA key (NA, eA) and h:

c = seA (mod NA)

He accepts if and only if

h(m) = c

.
This works because seA (mod NA) =

((h(m))dA)eA (mod NA) = ((h(m))eA)dA (mod NA) = h(m).
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Diffie-Hellman Key Exchange
Alice – secret a Bob – secret b

Let u = ga (mod p) and
Su = Alice’s signature on u

u,Su -
Verify Su;
Let v = gb (mod p) and
Sv = Bob’s signature on v

v , Sv�

Verify Sv ;
Let k = va (mod p)

Let k = ub (mod p)

Correctness:
va ≡ (gb)a ≡ gab (mod p)
ub ≡ (ga)b ≡ gab (mod p)
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Diffie-Hellman Key Exchange

Secrecy of k depends on difficulty of finding gab (mod p) from
ga (mod p) and gb (mod p).

Easy if you can find discrete logs!

Computational Diffie-Hellman Problem (DHP):
Given an abelian group G , g ∈ G of prime order q, gu, g v ,
u, v unknown, chosen uniformly at random from {0, 1, . . . , q − 1},
find guv .

If you can solve the DHP efficiently in 〈g〉, Diffie-Hellman Key
Exchange is insecure.

If you can break Diffie-Hellman Key Exchange (find k) efficiently,
you can solve the DHP efficiently.
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El Gamal Cryptosystem

Keys: Easy to create from Domain Parameters
I PKA = h = g x (mod p)

I SKA = x ∈ {0, 1, . . . , q − 1}

Encryption of m ∈ 〈g〉:
I Choose random k ∈ {0, 1, . . . , q − 1}
I E (m, k,PKA) = (c1, c2) = (gk (mod p),m · hk (mod p))

Decryption of (c1, c2):
I m′ = c2 · (cx1 )−1 (mod p)

Security: If cryptanalyst can efficiently compute discrete logarithms
in 〈g〉, the system be broken efficiently.
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El Gamal Cryptosystem

Suppose a cryptanalyst can efficiently solve the DHP in 〈g〉.
Eve can compute guv (mod p) from g , α = gu (mod p),
β = g v (mod p):

Compute δ = g xk (mod p), from
h = g x (mod p) , c1 = gk (mod p).
Compute m = c2 · δ−1 (mod p).

Then, you can break the El Gamal Cryptosystem.

16 / 22



El Gamal Cryptosystem

Suppose a cryptanalyst can efficiently solve the DHP in 〈g〉.
Eve can compute guv (mod p) from g , α = gu (mod p),
β = g v (mod p):

Compute δ = g xk (mod p), from
h = g x (mod p) , c1 = gk (mod p).
Compute m = c2 · δ−1 (mod p).

Then, you can break the El Gamal Cryptosystem.

16 / 22



El Gamal Cryptosystem

Suppose a cryptanalyst can efficiently solve the DHP in 〈g〉.
Eve can compute guv (mod p) from g , α = gu (mod p),
β = g v (mod p):

Compute δ = g xk (mod p), from
h = g x (mod p) , c1 = gk (mod p).
Compute m = c2 · δ−1 (mod p).

Then, you can break the El Gamal Cryptosystem.

16 / 22



El Gamal Cryptosystem

Suppose a cryptanalyst can break the El Gamal Cryptosystem.

From (c1, c2), g , h, he/she can compute m = c2 · (cx1 )−1 (mod p).

To compute guv (mod p) from g , α = gu (mod p),
β = g v (mod p):

Use the same g .
Let h = g x = α, c1 = β, and c2 ∈R 〈g〉. (Note x = u.)

The cryptanalyst computes m′ = c2 · (cx1 )−1 (mod p).
Compute δ ≡ c2 ·m′−1 ≡ cx1 ≡ βx ≡ (g v )x ≡ guv (mod p).

So, you can efficiently solve the DHP in 〈g〉.

Lots more can be said about the security of El Gamal, plus and
minus.
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Elliptic Curves
In the El Gamal Cryptosystem and the Diffie-Hellman Key
Exchange, we just used that we had an abelian group with a large
cyclic subgroup of prime order.

Suppose we use elliptic curves over ZZp, p large prime:

E (p) : Y 2 ≡ X 3 + aX + b (mod p)

Point at infinity = identity: O
O + P = P +O = P

Instead of multiplication, we use addition:
Let P = (x1, y1), Q = (x2, y2).
−P = (x1,−y1), P + (−P) = O
Let x3 = λ2 − x1 − x2
P + Q = (x3, (x1 − x3) · λ− y1)
where if x1 6= x2, λ = y2−y1

x2−x1 ,

and if x1 = x2, y1 6= 0, λ =
3x2

1+a
2y1 .
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Elliptic Curves over ZZp, p large prime

Idea: Use elliptic curves: shorter keys for same security.

Fact: The number of points on an elliptic curve E (p) can be
computed in Õ((log p)4) time.

So we can find a curve and a point with large order.

How do you do the division? λ = y2−y1
x2−x1

Extended Euclidean Algorithm.
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El Gamal Cryptosystem

Keys: Easy to create from Domain Parameters
I PKA = h = g x (mod p)

I SKA = x ∈ {0, 1, . . . , q − 1}

Encryption of m ∈ 〈g〉:
I Choose random k ∈ {0, 1, . . . , q − 1}
I E (m, k,PKA) = (c1, c2) = (gk (mod p),m · hk (mod p))

Decryption of (c1, c2):
I m′ = c2 · (cx1 )−1 (mod p)

Implementation: How do you do the “exponentiation”?
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El Gamal Cryptosystem, with Elliptic Curves
Keys: E (p), G generating a subgroup of large prime order q,
invertible function f mapping m to Pm on E (p),
I PKA = H = x · G
I SKA = x ∈ {0, 1, . . . , q − 1}

Encryption of m:
I Choose random k ∈ {0, 1, . . . , q − 1}
I E (m, k,PKA) = (C1,C2) = (k · G , f (m) + k · H)

Decryption of (C1,C2):
I P = C2 − (x · C1)
I m′ = f −1(P)

Correctness:

f (m′) ≡ C2 − (x · C1)

≡ (f (m) + k · H)− (x · (k · G ))

≡ f (m) + k · (x · G )− (xk · G )

≡ f (m)
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Elliptic Curves over ZZp, p large prime

Two values modulo p for each point. Can we save space?

Lemma: Let p be an odd prime, y1, y2 ∈ ZZ ∗p . If
y1 = −y2 (mod p), then y1 (mod 2) 6= y2 (mod 2).

PointCompress(x , y) = (x , y (mod 2))

PointDecompress(x , i)
z ← x3 + ax + b (mod p)
y ←

√
z (mod p)

if y ≡ i (mod 2)
then return (x , y)
else return (x , p − y)
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