Discrete Logarithm Problem in Z;

Appears to be hard, similar to the Factoring Problem.
So we can use it in cryptosystems, as a one-way function.

1/22



Discrete Logarithm Problem in Z;

Appears to be hard, similar to the Factoring Problem.
So we can use it in cryptosystems, as a one-way function.

DLP(p):

Given a large prime p, o, 8 € Zj.

Find x € Z,_1 such that 8 = o (mod p).
x is the discrete logarithm of 3 w.r.t. a.

x = log,, B (mod p)

1/22



Discrete Logarithm Problem in Z;

Appears to be hard, similar to the Factoring Problem.
So we can use it in cryptosystems, as a one-way function.

DLP(p):

Given a large prime p, o, 8 € Zj.

Find x € Z,_1 such that 8 = o (mod p).
x is the discrete logarithm of 3 w.r.t. a.

x = log,, B (mod p)

Example: In Z%, 6 = logz 1 (mod 7), since 1 = 3° (mod 7)

1/22



Discrete Logarithm Problem in Z;

Appears to be hard, similar to the Factoring Problem.
So we can use it in cryptosystems, as a one-way function.

DLP(p):

Given a large prime p, o, 8 € Zj.

Find x € Z,_1 such that 8 = o (mod p).
x is the discrete logarithm of 3 w.r.t. a.

x = log,, B (mod p)

Example: In Z%, 6 = logz 1 (mod 7), since 1 = 3° (mod 7)

There is no discrete log of 3 w.r.t 1in Z;.

1/22



Discrete Logarithm Problem in Z;

For DLP(p) to be difficult:

1. The order of a must be large.

2/22



Discrete Logarithm Problem in Z;

For DLP(p) to be difficult:

1. The order of a must be large.
Example: p — 1 has order 2 modulo p.
It is easy to find the discrete log of p — 1 or 1 w.rt. p — 1.
Use brute force. How?

2/22



Discrete Logarithm Problem in Z;

For DLP(p) to be difficult:

1. The order of a must be large.
Example: p — 1 has order 2 modulo p.

It is easy to find the discrete log of p — 1 or 1 w.rt. p — 1.
Use brute force. How?

2. p must be large.

2/22



Discrete Logarithm Problem in Z;

For DLP(p) to be difficult:

1. The order of a must be large.
Example: p — 1 has order 2 modulo p.
It is easy to find the discrete log of p — 1 or 1 w.rt. p — 1.
Use brute force. How?

2. p must be large.
Again, use brute force.

2/22



Discrete Logarithm Problem in Z;

For DLP(p) to be difficult:

1. The order of a must be large.
Example: p — 1 has order 2 modulo p.
It is easy to find the discrete log of p — 1 or 1 w.rt. p — 1.
Use brute force. How?

2. p must be large.
Again, use brute force.

3. p— 1 must have at least 1 large prime factor.

2/22



Discrete Logarithm Problem in Z;

For DLP(p) to be difficult:

1. The order of a must be large.
Example: p — 1 has order 2 modulo p.
It is easy to find the discrete log of p — 1 or 1 w.rt. p — 1.
Use brute force. How?

2. p must be large.
Again, use brute force.

3. p— 1 must have at least 1 large prime factor.
Use Pohlig-Hellman's algorithm.

2/22



Pohlig-Hellman's Algorithm

Pohlig-Hellman(«, 3, p)

Factor p — 1 =[], p?

fori = 1to k do
Compute x; = (log, 8 (mod p)) modulo p;’

endfor

Use Chinese Remainder Theorem to compute x modulo p — 1
s.t. x = x; (mod pf) for 1 < i < k

return x

3/22



Pohlig-Hellman's Algorithm

Pohlig-Hellman(«, 3, p)

Factor p — 1 =[], p?

fori = 1to k do
Compute x; = (log, 8 (mod p)) modulo p;’

endfor

Use Chinese Remainder Theorem to compute x modulo p — 1
s.t. x = x; (mod pf) for 1 < i < k

return x

To compute x = logz 26 (mod 29):
p—1=4-7

3/22



Pohlig-Hellman's Algorithm

Pohlig-Hellman(«, 3, p)

Factor p — 1 =[], p?

fori = 1to k do
Compute x; = (log, 8 (mod p)) modulo p;’

endfor

Use Chinese Remainder Theorem to compute x modulo p — 1
s.t. x = x; (mod pf) for 1 < i < k

return x

To compute x = logz 26 (mod 29):

p—1=4-7

To compute x (mod 7): o/ = 3%8/7 =23, 5/ = 26%8/7 = 23
Work in a subgroup of size 7. Get x =1 (mod 7).

3/22



Pohlig-Hellman's Algorithm

Pohlig-Hellman(«, 3, p)

Factor p — 1 =[], p?

fori = 1to k do
Compute x; = (log, 8 (mod p)) modulo p;’

endfor

Use Chinese Remainder Theorem to compute x modulo p — 1
s.t. x = x; (mod pf) for 1 < i < k

return x

To compute x = logz 26 (mod 29):

p—1=4-7

To compute x (mod 7): o/ = 3%8/7 =23, 5/ = 26%8/7 = 23
Work in a subgroup of size 7. Get x =1 (mod 7).

More difficult when ¢; > 1, but x = 3 (mod 4).

3/22



Pohlig-Hellman's Algorithm

Pohlig-Hellman(«, 3, p)

Factor p — 1 =[], p?

fori = 1to k do
Compute x; = (log, 8 (mod p)) modulo p;’

endfor

Use Chinese Remainder Theorem to compute x modulo p — 1
s.t. x = x; (mod pf) for 1 < i < k

return x

To compute x = logz 26 (mod 29):

p—1=4-7

To compute x (mod 7): o/ = 3%8/7 =23, 5/ = 26%8/7 = 23
Work in a subgroup of size 7. Get x =1 (mod 7).

More difficult when ¢; > 1, but x = 3 (mod 4).

Thus, x =15 (mod 28).

3/22



Index Calculus Method

Suppose « is a primitive element modulo p.
Index Calculus(c, 8, p)

Choose a factor base F = {p1,p2,...,ps}
Find log,, p; for all i:
Find random {x1,x2,...,x:} s.t. & (mod p) factors over F:
o = pitps? - pet, for integers e;
xj = ey jlog, p1 + exjlog, p2 + - - - + esjlog, ps (mod p-1)
Solve for the s unknowns log,, p; in a linear system of congruences.
Find x = log,, 5:
repeat
Choose random r € Z,_;
until Sa” (mod p) factors over F
Suppose fa" = ot = pftps? - .- p& (mod p)
return (—r + ey log,, p1 + e2log, po + - - - + eslog, ps (mod p-1))

Expected execution time: O(ecvInPininp)

4/22



Index Calculus Method Example

To find discrete log of 23 w.r.t. 11 in Z3y:
Choose factor base {2,3,5}. 11* =2, 11¥ = 3, 11* = 5 (mod 29).
Choose exponents randomly: 7, 15, 19.

5/22



Index Calculus Method Example
To find discrete log of 23 w.r.t. 11 in Z3y:
Choose factor base {2,3,5}. 11* =2, 11¥ = 3, 11* = 5 (mod 29).
Choose exponents randomly: 7, 15, 19.

117 (mod 29) = 12 = 22 .31 = 112 . 11¥
1115 (mod 29) = 18 = 21 . 32 = 11% . 11%
1119 (mod 29) = 15 = 3! . 51 = 117 . 117

5/22



Index Calculus Method Example
To find discrete log of 23 w.r.t. 11 in Z3y:
Choose factor base {2,3,5}. 11* =2, 11¥ = 3, 11* = 5 (mod 29).
Choose exponents randomly: 7, 15, 19.

117 (mod 29) = 12 = 22 .31 = 112 . 11¥
1115 (mod 29) = 18 = 21 . 32 = 11% . 11%
1119 (mod 29) = 15 = 3! . 51 = 117 . 117

2x+y =7 (mod 28)
x 4+ 2y =15 (mod 28)
y +z =19 (mod 28)

5/22



Index Calculus Method Example
To find discrete log of 23 w.r.t. 11 in Z3y:
Choose factor base {2,3,5}. 11* =2, 11¥ = 3, 11* = 5 (mod 29).
Choose exponents randomly: 7, 15, 19.

117 (mod 29) = 12 = 22 .31 = 112 . 11¥
1115 (mod 29) = 18 = 21 . 32 = 11% . 11%
1119 (mod 29) = 15 = 3! . 51 = 117 . 117

2x+y =7 (mod 28)
x 4+ 2y =15 (mod 28)
y +z =19 (mod 28)

Subtracting twice first from second:
—3x =1 (mod 28), so x =9

5/22



Index Calculus Method Example
To find discrete log of 23 w.r.t. 11 in Z3y:
Choose factor base {2,3,5}. 11* =2, 11¥ = 3, 11* = 5 (mod 29).
Choose exponents randomly: 7, 15, 19.

117 (mod 29) = 12 = 22 .31 = 112 . 11¥
1115 (mod 29) = 18 = 21 . 32 = 11% . 11%
1119 (mod 29) = 15 = 3! . 51 = 117 . 117
2x+y =7 (mod 28)

x 4+ 2y =15 (mod 28)

y +z =19 (mod 28)

Subtracting twice first from second:

—3x =1 (mod 28), so x =9

y =—11=17 (mod 28), so y = 17

5/22



Index Calculus Method Example
To find discrete log of 23 w.r.t. 11 in Z3y:
Choose factor base {2,3,5}. 11* =2, 11¥ = 3, 11* = 5 (mod 29).
Choose exponents randomly: 7, 15, 19.

117 (mod 29) = 12 = 22 .31 = 112 . 11¥
1115 (mod 29) = 18 = 21 . 32 = 11% . 11%
1119 (mod 29) = 15 = 3! . 51 = 117 . 117

2x+y =7 (mod 28)

x 4+ 2y =15 (mod 28)

y +z =19 (mod 28)

Subtracting twice first from second:
—3x =1 (mod 28), so x =9

y =—11=17 (mod 28), so y = 17
z=72

5/22



Index Calculus Method Example
To find discrete log of 23 w.r.t. 11 in Z3y:
Choose factor base {2,3,5}. 11* =2, 11¥ = 3, 11* = 5 (mod 29).
Choose exponents randomly: 7, 15, 19.

117 (mod 29) = 12 = 22 .31 = 112 . 11¥
1115 (mod 29) = 18 = 21 . 32 = 11% . 11%
1119 (mod 29) = 15 = 3! . 51 = 117 . 117
2x+y =7 (mod 28)

x 4+ 2y =15 (mod 28)

y +z =19 (mod 28)

Subtracting twice first from second:

—3x =1 (mod 28), so x =9

y =—11=17 (mod 28), so y = 17
z=72

Try 1127 .23 =10 = 11° - 112 (mod 29)

5/22



Index Calculus Method Example
To find discrete log of 23 w.r.t. 11 in Z3y:
Choose factor base {2,3,5}. 11* =2, 11¥ = 3, 11* = 5 (mod 29).
Choose exponents randomly: 7, 15, 19.

117 (mod 29) = 12 = 22 .31 = 112 . 11¥
1115 (mod 29) = 18 = 21 . 32 = 11% . 11%
1119 (mod 29) = 15 = 3! . 51 = 117 . 117

2x+y =7 (mod 28)
x 4+ 2y =15 (mod 28)
y +z =19 (mod 28)

Subtracting twice first from second:
—3x =1 (mod 28), so x =9

y =—11=17 (mod 28), so y = 17
z=2

Try 1127 .23 =10 = 11° - 112 (mod 29)
Discrete log of 23 is 9 + 2 — 27 (mod 28) = 12

5/22



Discrete Logarithm Algorithms

The Index Calculus Method works over Z; since multiplication
over integers holds over Z if the result is less than p.

6/22



Discrete Logarithm Algorithms

The Index Calculus Method works over Z; since multiplication
over integers holds over Z if the result is less than p.

This does not necessarily work for other groups.

6/22



Discrete Logarithm Algorithms

The Index Calculus Method works over Z; since multiplication
over integers holds over Z if the result is less than p.

This does not necessarily work for other groups.
The best of the known general purpose algorithms for discrete

logarithms modulo a prime is the General Number Field Sieve.
. . 2)\1
Its expected execution time: O(ec(nP(Ininp)%) /3)

6/22



Discrete Logarithm Algorithms

The Index Calculus Method works over Z; since multiplication
over integers holds over Z if the result is less than p.

This does not necessarily work for other groups.

The best of the known general purpose algorithms for discrete
logarithms modulo a prime is the General Number Field Sieve.
Its expected execution time: O(ec(!np(inin p)2)1/3)

Better than the O(ecVMPINInP) for Index Calculus.

Also does not necessarily work for other groups.

6/22



Discrete Logarithm Algorithms

The Index Calculus Method works over Z; since multiplication
over integers holds over Z if the result is less than p.

This does not necessarily work for other groups.

The best of the known general purpose algorithms for discrete
logarithms modulo a prime is the General Number Field Sieve.
Its expected execution time: O(ec(!np(inin p)2)1/3)

Better than the O(ecVMPINInP) for Index Calculus.

Also does not necessarily work for other groups.

There is a polynomial time quantum algorithm for discrete
logarithms.

6/22



El Gamal Cryptosystem

With RSA, no two users should share the same prime.
With El Gamal, there are

Domain Parameters:

» large primes p,q, s.t. g | (p — 1)
> g € Z; of order g

7/22



El Gamal Cryptosystem

With RSA, no two users should share the same prime.
With El Gamal, there are

Domain Parameters:

» large primes p,q, s.t. g | (p — 1)
> g € Z; of order g
g = r(P=1/4 (mod p) for some r € Z,

7/22



El Gamal Cryptosystem

With RSA, no two users should share the same prime.
With El Gamal, there are

Domain Parameters:
» large primes p,q, s.t. g | (p — 1)

> g € Z; of order g
g = r(P=1/4 (mod p) for some r € Z,
How do you check the order of g7

7/22



El Gamal Cryptosystem

With RSA, no two users should share the same prime.
With El Gamal, there are

Domain Parameters:

» large primes p,q, s.t. g | (p — 1)
> g € Z; of order g
g = r(P=1/4 (mod p) for some r € Z,

How do you check the order of g7
Check g # 1.

7/22



El Gamal Cryptosystem
Keys: Easy to create from Domain Parameters
» PKy=h=g* (mod p)
» SKp=x€{0,1,...,9—1}

Encryption of m € (g):

» Choose random k € {0,1,...,qg — 1}

> E(m, k, PKa) = (c1, ) = (g (mod p), m- hk (mod p))
Decryption of (c1, ):

> m =c(cf)"t (mod p)

8/22



El Gamal Cryptosystem
Keys: Easy to create from Domain Parameters
» PKy=h=g* (mod p)
» SKp=x€{0,1,...,9—1}

Encryption of m € (g):

» Choose random k € {0,1,...,qg — 1}

> E(m, k, PKa) = (c1, ) = (g (mod p), m- hk (mod p))
Decryption of (c1, ):

> m =c(cf)"t (mod p)

Correctness:

1Tl
)
>
NG
x
iy
o
X
X
N—r
N

8/22



El Gamal Cryptosystem

Keys: Easy to create from Domain Parameters
» PKy=h=g* (mod p)
» SKp=x€{0,1,...,9—1}

Encryption of m € (g):

» Choose random k € {0,1,...,q — 1}

> E(m, k, PKa) = (c1,2) = (g (mod p), m- h* (mod p))
Decryption of (ci1, ¢2):

> m =c(cf)"t (mod p)

9/22



El Gamal Cryptosystem

Keys: Easy to create from Domain Parameters
» PKy=h=g* (mod p)
» SKp=x€{0,1,...,9—1}

Encryption of m € (g):

» Choose random k € {0,1,...,q — 1}

> E(m, k, PKa) = (c1,2) = (g (mod p), m- h* (mod p))
Decryption of (c1, ¢2):

> m =c(cf)"t (mod p)

Security:
Suppose a cryptanalyst can compute discrete logarithms in (g).
How can the system be broken?

9/22



El Gamal Cryptosystem

Keys: Easy to create from Domain Parameters
» PKs=h=g* (mod p)
» SKa=x¢€{0,1,...,9—1}

Encryption of m € (g):

» Choose random k € {0,1,...,qg — 1}

> E(m, k, PKa) = (c1, ) = (g (mod p), m- hk (mod p))
Decryption of (ci1, &2):

> m' =c-(cf)7! (mod p)

10/22



El Gamal Cryptosystem

Keys: Easy to create from Domain Parameters
» PKs=h=g* (mod p)
» SKa=x¢€{0,1,...,9—1}

Encryption of m € (g):

» Choose random k € {0,1,...,qg — 1}

> E(m, k, PKa) = (c1, ) = (g (mod p), m- hk (mod p))
Decryption of (ci1, &2):

> m' =c-(cf)7! (mod p)

Implementation: Can the system be implemented efficiently?

10/22



Digital Signatures with RSA

Suppose Alice wants to a document m such that:
» No one else could her signature
» It is easy for others to her signature

Note m has arbitrary length.
RSA is used on fixed length messages.
Alice uses a cryptographically secure hash function h, such that:

» For any message m’, h(m') has a fixed length (512 bits?)

» It is “hard” for anyone to find 2 messages (m1, m2) such that
h(ml) = h(mg)

11/22



Digital Signatures with RSA
Then Alice “decrypts’ h(m) with her secret RSA key (Na, da)

s = (h(m))% (mod Nj)

Bob her signature using her public RSA key (N4, ea) and h:

¢ = 5% (mod Ny)
He accepts if and only if

h(m)=c

This works because s (mod Nj) =

((h(m))#) (mod Na) = ((h(m))*)% (mod Na) = h(m).

12/22



Diffie-Hellman Key Exchange

Alice — secret a Bob — secret b
Let u = g? (mod p) and
S, = Alice's signature on u
u,S,
Verify S,;

Let v = g? (mod p) and
S, = Bob’s signature on v

Verify S;
Let k = v? (mod p)
Let k = u® (mod p)

13/22



Diffie-Hellman Key Exchange

Alice — secret a Bob — secret b
Let u = g? (mod p) and
S, = Alice's signature on u
u,S,
Verify S,;

Let v = g? (mod p) and
S, = Bob’s signature on v

Verify S;
Let k = v? (mod p)
Let k = u® (mod p)

Correctness:
v? = (g")? = g% (mod p)
ub = (g?)? = g (mod p)

13/22



Diffie-Hellman Key Exchange

Secrecy of k depends on difficulty of finding g2° (mod p) from
g? (mod p) and g (mod p).

14 /22



Diffie-Hellman Key Exchange

Secrecy of k depends on difficulty of finding g2° (mod p) from
g? (mod p) and g (mod p).

Easy if you can find discrete logs!

14 /22



Diffie-Hellman Key Exchange

Secrecy of k depends on difficulty of finding g2° (mod p) from
g? (mod p) and g (mod p).

Easy if you can find discrete logs!

Computational Diffie-Hellman Problem (DHP):

Given an abelian group G, g € G of prime order g, g¥, g,

u, v unknown, chosen uniformly at random from {0,1,...,q — 1},
find g"".

14 /22



Diffie-Hellman Key Exchange

Secrecy of k depends on difficulty of finding g2° (mod p) from
g? (mod p) and g (mod p).

Easy if you can find discrete logs!

Computational Diffie-Hellman Problem (DHP):

Given an abelian group G, g € G of prime order g, g¥, g,

u, v unknown, chosen uniformly at random from {0,1,...,q — 1},
find g"".

If you can solve the DHP efficiently in (g), Diffie-Hellman Key
Exchange is insecure.

14 /22



Diffie-Hellman Key Exchange

Secrecy of k depends on difficulty of finding g2° (mod p) from
g? (mod p) and g (mod p).

Easy if you can find discrete logs!

Computational Diffie-Hellman Problem (DHP):

Given an abelian group G, g € G of prime order g, g¥, g,

u, v unknown, chosen uniformly at random from {0,1,...,q — 1},
find g"".

If you can solve the DHP efficiently in (g), Diffie-Hellman Key
Exchange is insecure.

If you can break Diffie-Hellman Key Exchange (find k) efficiently,
you can solve the DHP efficiently.

14 /22



El Gamal Cryptosystem

Keys: Easy to create from Domain Parameters
» PKp=h=g* (mod p)
> SKa=x€{0,1,...,9—1}

Encryption of m € (g):

» Choose random k € {0,1,...,qg — 1}
> E(m k PKa) = (c1,c2) = (g* (mod p), m- h* (mod p))

Decryption of (ci1, 2):
> ol =G ()t (mod p)

15/22



El Gamal Cryptosystem

Keys: Easy to create from Domain Parameters
» PKp=h=g* (mod p)
> SKa=x€{0,1,...,9—1}

Encryption of m € (g):

» Choose random k € {0,1,...,qg — 1}

> E(m, k, PKa) = (c1, ) = (g (mod p), m- hk (mod p))
Decryption of (c1, 2):

> m =c-(cf)! (mod p)

Security: If cryptanalyst can efficiently compute discrete logarithms
in (g), the system be broken efficiently.

15/22



El Gamal Cryptosystem

Suppose a cryptanalyst can efficiently solve the DHP in (g).
Eve can compute g (mod p) from g, a = g“ (mod p),
B =g (mod p):

16 /22



El Gamal Cryptosystem

Suppose a cryptanalyst can efficiently solve the DHP in (g).
Eve can compute g (mod p) from g, a = g“ (mod p),

B =g (mod p):

Compute § = g (mod p), from

h=g* (mod p) ,c1 = g* (mod p).
Compute m = ¢ - 5! (mod p).

16 /22



El Gamal Cryptosystem

Suppose a cryptanalyst can efficiently solve the DHP in (g).
Eve can compute g (mod p) from g, a = g“ (mod p),

B =g (mod p):

Compute § = g (mod p), from
h=g* (mod p) ,c1 = g* (mod p).
Compute m = ¢ - 5! (mod p).

Then, you can break the El Gamal Cryptosystem.

16 /22



El Gamal Cryptosystem

Suppose a cryptanalyst can break the El Gamal Cryptosystem.

17 /22



El Gamal Cryptosystem

Suppose a cryptanalyst can break the El Gamal Cryptosystem.

From (c1, 2), g, h, he/she can compute m = ¢ - (¢f)~! (mod p).

17 /22



El Gamal Cryptosystem
Suppose a cryptanalyst can break the El Gamal Cryptosystem.

From (c1, 2), g, h, he/she can compute m = ¢ - (¢f)~! (mod p).

u

To compute g (mod p) from g, a = g“ (mod p),

B =g (mod p):

17 /22



El Gamal Cryptosystem

Suppose a cryptanalyst can break the El Gamal Cryptosystem.
From (c1, 2), g, h, he/she can compute m = ¢ - (¢f)~! (mod p).

To compute g (mod p) from g, a = g“ (mod p),
5 =g" (mod p):

Use the same g.
Let h=g*=0a, =7, and c €g (g). (Note x = u.)

17 /22



El Gamal Cryptosystem
Suppose a cryptanalyst can break the El Gamal Cryptosystem.

From (c1, 2), g, h, he/she can compute m = ¢ - (¢f)~! (mod p).

u

To compute g (mod p) from g, a =g
5 =g" (mod p):

(mod p),

Use the same g.
Let h=g*=0a, =7, and c €g (g). (Note x = u.)

The cryptanalyst computes m’ = ¢ - (¢)~ (mod p).
Compute § = o -m' 1 =¢f =¥ = (g*) = g“ (mod p).

17 /22



El Gamal Cryptosystem
Suppose a cryptanalyst can break the El Gamal Cryptosystem.

From (c1, 2), g, h, he/she can compute m = ¢ - (¢f)~! (mod p).

u

To compute g (mod p) from g, a = g“ (mod p),

B =g (mod p):

Use the same g.
Let h=g*=0a, =7, and c €g (g). (Note x = u.)

The cryptanalyst computes m’ = ¢ - (¢)~ (mod p).
Compute § = o -m' 1 =¢f =¥ = (g*) = g“ (mod p).

So, you can efficiently solve the DHP in (g).

17 /22



El Gamal Cryptosystem
Suppose a cryptanalyst can break the El Gamal Cryptosystem.

From (c1, 2), g, h, he/she can compute m = ¢ - (¢f)~! (mod p).

u

To compute g (mod p) from g, a =g
5 =g" (mod p):

(mod p),
Use the same g.
Let h=g*=0a, =7, and c €g (g). (Note x = u.)

The cryptanalyst computes m’ = ¢ - (¢)~ (mod p).
Compute § = o -m' 1 =¢f =¥ = (g*) = g“ (mod p).

So, you can efficiently solve the DHP in (g).

Lots more can be said about the security of El Gamal, plus and
minus.

17 /22



Elliptic Curves

In the EI Gamal Cryptosystem and the Diffie-Hellman Key
Exchange, we just used that we had an abelian group with a large
cyclic subgroup of prime order.

18/22



Elliptic Curves
In the EI Gamal Cryptosystem and the Diffie-Hellman Key
Exchange, we just used that we had an abelian group with a large
cyclic subgroup of prime order.

Suppose we use elliptic curves over Zp, p large prime:
E(p): Y?>=X3>+aX+b (mod p)

Point at infinity = identity: O
O+P=P+0=P

18/22



Elliptic Curves

In the EI Gamal Cryptosystem and the Diffie-Hellman Key
Exchange, we just used that we had an abelian group with a large
cyclic subgroup of prime order.

Suppose we use elliptic curves over Zp, p large prime:
E(p): Y?>=X3>+aX+b (mod p)

Point at infinity = identity: O
O+P=P+0=P

Instead of multiplication, we use addition:

Let P = (x1,)1), Q@ = (x2,¥2).
—P=(x1,-n), P+(-P)=0

18/22



Elliptic Curves

In the EI Gamal Cryptosystem and the Diffie-Hellman Key
Exchange, we just used that we had an abelian group with a large
cyclic subgroup of prime order.

Suppose we use elliptic curves over Zp, p large prime:
E(p): Y?>=X3>+aX+b (mod p)

Point at infinity = identity: O

O+P=P+0=P

Instead of multiplication, we use addition:
Let P = (x1,)1), Q@ = (x2,2).
—P=(x1,-y1), P+(-P)=0
LetX3:)\2—X1—X2

P+Q: (X3, (X1 —X3)-)\—y1)

where if x; # xo, — %,
. 3,2
and if x; = x2, y1 # 0, )\ = Xita

2y1
18 /22



Elliptic Curves over Z,, p large prime

Idea: Use elliptic curves: shorter keys for same security.

19/22



Elliptic Curves over Z,, p large prime

|dea: Use elliptic curves: shorter keys for same security.

Fact: The number of points on an elliptic curve E(p) can be
computed in O((log p)*) time.

19/22



Elliptic Curves over Z,, p large prime

|dea: Use elliptic curves: shorter keys for same security.

Fact: The number of points on an elliptic curve E(p) can be
computed in O((log p)*) time.

So we can find a curve and a point with large order.

19/22



Elliptic Curves over Z,, p large prime

|dea: Use elliptic curves: shorter keys for same security.

Fact: The number of points on an elliptic curve E(p) can be
computed in O((log p)*) time.

So we can find a curve and a point with large order.

How do you do the division? A=2-0

19/22



Elliptic Curves over Z,, p large prime

|dea: Use elliptic curves: shorter keys for same security.

Fact: The number of points on an elliptic curve E(p) can be
computed in O((log p)*) time.

So we can find a curve and a point with large order.

How do you do the division? A=21

X2—X1

Extended Euclidean Algorithm.

19/22



El Gamal Cryptosystem

Keys: Easy to create from Domain Parameters
» PKs=h=g* (mod p)
» SKa=x¢€{0,1,...,9—1}

Encryption of m € (g):

» Choose random k € {0,1,...,qg — 1}

> E(m, k, PKa) = (c1, ) = (g (mod p), m- hk (mod p))
Decryption of (ci1, &2):

> m' =c-(cf)7! (mod p)

20/22



El Gamal Cryptosystem

Keys: Easy to create from Domain Parameters
» PKs=h=g* (mod p)
» SKa=x¢€{0,1,...,9—1}

Encryption of m € (g):

» Choose random k € {0,1,...,qg — 1}
> E(m, k, PKa) = (c1, ) = (g (mod p), m- hk (mod p))

Decryption of (ci1, &2):
> m' =c-(cf)7! (mod p)

Implementation: How do you do the “exponentiation’?

20/22



El Gamal Cryptosystem, with Elliptic Curves
Keys: E(p), G generating a subgroup of large prime order g,
invertible function f mapping m to P, on E(p),
» PKy=H=x-G
» SKa=x¢€{0,1,...,9—1}

Encryption of m:

» Choose random k € {0,1,...,qg — 1}

» E(m,k,PKa)=(C,G) = (k- G, f(m)+ k- H)
Decryption of (Ci, C2):

> P = Cb —-(X- C&)

> m' = f1(P)

21/22



El Gamal Cryptosystem, with Elliptic Curves

Keys: E(p), G generating a subgroup of large prime order g,
invertible function f mapping m to P, on E(p),

» PKy=H=x-G

» SKa=x¢€{0,1,...,9—1}

Encryption of m:

» Choose random k € {0,1,...,qg — 1}

» E(m,k,PKa)=(C,G) = (k- G, f(m)+ k- H)
Decryption of (Ci, C2):

> P = Cb —-(X- C&)

> m' = f1(P)

Correctness:

f(m)

G—(x-G)

(f(m) + k- H) = (x- (k- G))
=f(m)+k-(x-G)—(xk-G)
f(m)

21/22



Elliptic Curves over Z,, p large prime

Two values modulo p for each point. Can we save space?

22/22



Elliptic Curves over Z,, p large prime
Two values modulo p for each point. Can we save space?

Lemma: Let p be an odd prime, y1,y» € Z;. If
y1 = —y2 (mod p), then y; (mod 2) # y (mod 2).

22/22



Elliptic Curves over Z,, p large prime

Two values modulo p for each point. Can we save space?

Lemma: Let p be an odd prime, y1,y» € Z;. If
y1 = —y2 (mod p), then y; (mod 2) # y (mod 2).

PointCompress(x,y) = (x, y (mod 2))

PointDecompress(x, i)
z + x3+ ax+ b (mod p)
y = /z (mod p)
if y =1 (mod 2)
then return (x,y)
else return (x,p —y)

22/22



