Institut for Matematik og Datalogi March 7, 2008
Syddansk Universitet JFB

DM508 — Algorithms and Complexity — FO8
Lecture 11

Announcement

The exam questions for this year will be the same as last year. See the course’s homepage.

Lecture, March 5

We analyzed the running time of the KMP algorithm. We introduced approximation
algorithms from chapter 5, and covered the randomized algorithms for MAX-SAT from
the textbook and the notes (by Motwani and Raghavan).

Lecture, March 10

The students will have an opportunity to ask questions. I may present some research on
on-line algorithms.

Problems to be discussed on March 14

1. A dynamic hash table could be implemented as follows: The hash table initially has
size 1. When an insert occurs, if the table is not full, the item is hashed into the
table. If the table is full, a new table which is twice as large is created, and all of the
current elements are re-hashed into the new table.

Assume that hashing one item takes constant time. Let T; be the data structure
after operation number ¢. Let n; be the number of items in the table after operation
number 7. (Some operations might be searches, rather than inserts, so it is possible
that n; # i.) Let s; be the size of the table after operation number ¢ (always a power
of 2). Define a potential function ®(7;) = 2n; — s;. Note that for all tables of size
at least two, the table is always at least one item more than half full. What is the
amortized cost of an insertion? Consider both the case where the table is not full
just before the insertion, and the case where it is full. (Do the amortized analysis.)

Suppose n items are inserted into the structure. Give a good worst case bound on
the total cost of doing all of these n insertions.



2. A main ingredient in the analysis of Fibonacci heaps is that the degree of a node
must small relative to the size of the subtree of which it is a root. Unlike many
other efficient data structures, there is no logarithmic bound on the depth of a tree
produced by operations on n items. Show this by describing a sequence of Fibonacci
heap operations on n items that produces a heap-ordered tree of depth Q(n) in a
Fibonacci heap.

3. In the half 4-CNF satisfiability problem, a 4-CNF formula (CNF form, with exactly
4 literals per clause) F' is given. One knows that at least half of the clauses are
satisfiable by any truth assignment. The problem is to determine if there exists a
truth assignment to the variables of F' which satisfies the entire formula. Prove that
the half 4-CNF satisfiability problem is NP-complete.

4. In the Partition problem, a finite set A is given, along with a positive integer size
s(a), for each a € A. The problem is to determine if there exists a subset A’ C A
such that 3 c 4 s(a) = 3, c 4\ 4 S(a) (i.e. can you partition the set into two subsets
so the sizes of the items add together to exactly the same amount?). In the Bin
Packing problem, a positive integer bin capacity B, a positive integer K, and a finite
set A is given, along with a positive integer size s(a), for each a € A. The problem is
to determine if there exists a partition of A into disjoint sets Aq, A,, ..., Ax suchthat
the sum of the sizes of the items in each A; is B or less. (This partition into disjoint
sets gives a packing into K bins.)

e Partition is known to be NP-complete. Using this fact, prove that Bin Packing
is also NP-complete.

e Show that if there is an algorithm for Bin Packing which runs in time f(n) for
some function f, then there is an algorithm for the cost version of Bin Packing
(find the cost of the packing which uses fewest bins, where the cost is the number
of bins used) which runs in time O(p(f(n)) for some polynomial p.

e Suppose that you know that in the optimal packing there are at most 10 items
per bin and that there is an algorithm for Bin Packing which runs in time f(n)
for some function f. Show that then there is an algorithm for finding an optimal
packing (one that used the smallest possible number of bins) which runs in time
O(p(f(n)) for some polynomial p.



