
Institut for Matematik og Datalogi
Syddansk Universitet

January 31, 2008
JFB

DM508 – Algorithms and Complexity – F08
Lecture 2

Lecture, January 28

We began with an introduction to the course. Randomized Quicksort, from sections 7.3
to 7.4 in the textbook, were presented. Randomized Quicksort is also presented in the
course notes, those by Motwani and Raghavan. Counting sort from section 8.2 was also be
presented. We began on information theoretic lower bounds, defining decision trees, and
observing that showing that a problem has at least k outputs implies that an algorithm
doing t-way tests must do at least dlogt(k)e tests in the worst case. This is in section 8.1
of the textbook and section 2.4 of the first part of the course notes.

Lecture, January 30

Lower bounds from section 2.4 of the first part of the notes will be discussed (part of this
is also in section 8.1 of the textbook). We will also begin on sections 3.1, 3.2 and 3.3 of
those notes.

Lecture, February 4

We will cover section 3.5 of the DM508 notes, plus median finding from chapter 9 (sections
9.2 and 9.3) in the textbook. We may also begin on NP-completeness, from chapter 34 in
the textbook and the section by Papadimitriou and Steiglitz from the course notes.

Problems to be discussed on February 8

Do problems:

1. Do problems 3.2 (use Stirling’s approximation - formula 3.17 from the textbook, and
compare your result to the upper bound for merging, rather than to the lower bound
mentioned) and 3.10 from pages 140 and 141 of the notes.

2. From the following pages of that book by Baase:

Consider the problem of determining if a bit string of length n contains
two consecutive zeros. The basic operation is to examine a position in
the string to see if it is a 0 or a 1. For each n = 2, 3, 4, 5 either give an

1

adversary strategy to force any algorithm to examine every bit, or give and
algorithm that solves the problem by examining fewer than n bits.

and

a. You are given n keys and an integer k such that 1 ≤ k ≤ n. Give an
efficient algorithm to find any one of the k smallest keys. (For example,
if k = 3, the algorithm may provide the first-, second- or third-smallest
key. It need not know the exact rank of the key it outputs.) How many
key comparisons does your algorithm do? (Hint: Don’t look for something
complicated. One insight gives a short, simple algorithm.)
b. Give a lower bound, as a function of n and k, on the number of com-
parisons needed to solve this problems.

3. From Baase’s textbook: Suppose L1 and L2 are arrays, each with n keys sorted in
ascending order.

a. Devise an O((lgn)2) algorithm (or better) to find the nth smallest of the 2n
keys. (For simplicity, you may assume the keys are distinct.)

b. Give a lower bound for this problem.

4. Design an algorithm for finding the second largest item in an array, which is similar to
the standard algorithm for finding the largest. Keep track of the largest and second
largest at each step. How many comparisons does your algorithm do in the worst
case?

5. Design an efficient algorithm to find the third largest item in an array.

6. Consider the problem of Sorting by Reversals. You are given a permutation of the
numbers from 1 to n in an array, A. The operation you have is to choose two indices,
i and j, and to reverse the elements in the subarray from A[i] to A[j], inclusive. The
objective is to end with a sorted array. For example, given A = [8, 6, 4, 2, 7, 5, 3, 1],
the first operation could be (3, 6), resulting in A = [8, 6, 5, 7, 2, 4, 3, 1]. Then doing
the operations (2, 4), (3, 4), (5, 7), (5, 6), (1, 8) would finish sorting the array.

a. Give an algorithm which sorts the array in O(n) operations.

b. Prove that any algorithm needs at least Ω(n) operations in the worst case.

Assignment due Friday, February 15, 8:15

Note that this is part of your exam project, so it must be approved in order for you to
take the exam in March, and you may not work with or get help from others not in your
group. You may work in groups of two or three. You may write your solutions in English
or Danish, but write very neatly if you do it by hand.

2

Consider a company with a customer service department consisting of an automatic system
and two representatives. The company has customers in three cities, Detroit, Chicago, and
San Francisco. A request for service requires one of the service representatives to be in
that city to service it. Each city has an apartment for the service representative, who will
stay there until called to another city. Assume the flight between Chicago and Detroit
costs only a fraction 1/d of what the flight between Chicago and San Francisco costs,
and that it is impossible to fly from Detroit to San Francisco without changing planes
in Chicago and paying the sum of the ticket costs from Detroit to Chicago and from
Chicago to San Francisco. (Assume that all costs are symmetric, so that it costs exactly
as much fly the opposite direction between two cities.) The company wishes to minimize
the amount it spends on plane tickets. Assume in what follows that there is initially one
service representative in Detroit and one in San Francisco. In the following, assume that
if the next request for service is in a city where there is already a service representative,
then no service representative flies anywhere, and this costs nothing.

1. Show that in the worst case, any algorithm has cost at least n · f on a sequence of
requests of length n, where f is the cost of the cheaper flights.

2. Consider the Greedy algorithm which always requires the closer representative (note
that the closer pair of cities has the lower cost airfare) to travel (when travel is
necessary). Also consider the algorithm Dummy which, on requests in Chicago always
sends the representative which is in San Francisco (when travel is necessary), but
otherwise sends the closer representative. Show that for any constant c, there exists
a sequences where Dummy pays a factor more than c times what Greedy pays and
another sequence where Greedy pays a factor more than c what Dummy pays.

3. Design an algorithm Random, where its expected cost on any sequence is never more
than twice what Greedy’s is (on that same sequence). (Hint: Let the closest service
representative fly unless the request is in Chicago. If it is in Chicago, choose randomly
between the two with some fixed probabilities depending on d.)

4. Let S be a sequence requests, containing at most one request in San Francisco, which
is at the end if it exists. An example of such a sequence might be [Chicago, Detroit,
Detroit, Chicago, Chicago, Chicago, Detroit, Chicago, San Francisco]. Suppose the
sequence requires Greedy to pay for n flights (in this example n = 5). What is
Random’s expected cost as a function of n, f , and d?

5. Show that Random’s expected cost on any sequence is never more than twice what
Greedy’s is. Hint: For any request sequence, consider subsequences ending with
requests in San Francisco, so that you can assume there are no requests in San Fran-
cisco in the middle of the request sequence. Analyze these subsequences separately.
Divide the analysis into two cases, one where Greedy has at most 2d flights and one
where it has more. For Greedy, give a lower bound on the flight costs for the service
representatives. For Random, give an upper bound on the expected flight costs for

3

each of the two service representatives. You may use that
∑∞

i=0 i · ri = r
(r−1)2

for

|r| < 1.

4

