Institut for Matematik og Datalogi February 27, 2012
Syddansk Universitet JFB

DM508 — Algorithms and Complexity — 2012
Lecture 7

Lecture, February 20

We finished with NP-Completeness, showing that SUBSET SUM is NP-Complete and
considering options when faced with an HP-hard problem. We began on amortized analysis
from Chapter 17 of the textbook.

Lecture, February 24

We will finish amortized analysis from chapter 17 and begin on Fibonacci heaps from
chapter 19 in the textbook.

Lecture, February 27

We will finish Fibonacci heaps and begin on string matching from chapter 32.

Problems to be discussed on March 7

Do problems:

1. 19.2-1
2. 19.3-1
3. 19.4.1
4. 19-1

5. 19-3a
6. 19-2.

Assignment due Monday, March 5, 8:15

Note that this is part of your exam project, so it must be approved in order for you to take
the exam in March, and you may not work with or get help from others not in your group
(though you may talk with Magnus Find or myself). You may work in groups of two or
three. You may write your solutions in English or Danish, but write very neatly if you do
it by hand. Submit the assignment via Blackboard’s “SDU Assignment” as one PDF file.
Note that you should not turn in a paper copy. Turn in one assignment per group.

The assignments will be graded by 9:00 on March 9. You may pick them up in my office
at that time. If you do not get this one approved, but have not used any of your retries,
you may have until 8:15 Monday, March 12, to turn in a retry.

1. Consider creating a table with the hash values of all strings of length at most n over
an alphabet, ¥, with at most 2'¢ different symbols. Suppose your hash function h
works as follows: for r > 2, h(zx1xs...x,.) = f(x,, h(x129...7,_1), and h(z1) = f(z1,0),
where x1, s, ..., x, € X. Suppose f is a function which takes two inputs, one of length
16 bits (a symbol from the alphabet) and the second of length 128 bits and produces
an output of length 128 bits.

(a) Design an algorithm for computing hash values for all strings over ¥ of length
at most n which only Y7 | |X|* calls to the function f in the worst case.

(b) Use standard analysis techniques to show that your algorithm uses only > | |X|*

calls to f.

(c¢) Consider using the accounting method to analyze your algorithm. When your
algorithm hashes a string of length one, charge Z;:& |27 as the amortized cost.
Then, charge amortized cost zero for the other calls to f. Argue that this gives
the same result. (Note: You need to explain how you move credits around to
make this work. When you hash a string of length r, let its credit initially be

20 12

2. UNICODE is a coding scheme for representing symbols, such as digits, letters, punc-
tuation marks, etc. There are variations, but assume that each character we use
here is represented using 16 bits. Consider a counter which, instead of being binary,
is kept in UNICODE form, base 16 (use the digits 0,1,2,3,4,5,6,7,8,9,A,B,C,D,E.F),
and assume that m digits are stored. Thus, the number one hundred forty-one
(8D in base 16, hexadecimal) is stored in an array, C, of length m, where C[0] = 68
(0000000001000100 in binary, the UNICODE code for D), C[1] = 56 (0000000000111000),
and C[2] = C[3] = ... = C[m — 1] = 48 (UNICODE for 0). Give an algorithm for in-
crementing this type of counter and analyze it using the potential function method.
You may assume that you can increment a UNICODE value, check a UNICODE
value, or store a UNICODE value in one time unit.

