DM551 – Algorithms and Probability – 2018 Lecture 8

Lecture, September 26

We finished section 13.1 and up through theorem 13.5 in section 13.2 in *Algorithm Design* by Kleinberg and Tardos.

Lecture, October 1

We will finish section 13.2 and cover sections 13.3 and 13.4 in *Algorithm Design* by Kleinberg and Tardos.

Lecture, October 8

We will cover section 13.5 in Kleinberg and Tardos. We will also analyze the expected number of comparisons done by Randomized Quicksort, using section 7.4.2 of *Introduction to Algorithms*, 3rd edition, by Cormen, Leiserson, Rivest, and Stein (CLRS). The next topics will be from sections 13.9–13.10 in Kleinberg and Tardos.

Problems to be discussed on October 10

- 1. Exercises on pages 782–793: 6 and 7a.
- 2. Discuss Solved exercise 2 on page 776 of Kleinbert and Tardos.
- 3. This problem concerns finding a spanning bipartite subgraph, instead of a spanning tree. A bipartite graph G = (V, E) is such that $V = V_1 \cup V_2$ and $V_1 \cap V_2 = \emptyset$ ((V_1, V_2) is a partition of V), and all edges is E have one endpoint in V_1 and one endpoint in V_2 . (Any tree is a bipartite graph, but any graph with a cycle of odd length is not.) For an arbitrary graph G = (V, E) (not necessarily bipartite), a spanning bipartite subgraph G' of G is defined by a partition (V_1, V_2) of V, and the edges of G', E', are the edges in E with one endpoint in V_1 and one endpoint in V_2 .

Consider the following randomized algorithm which finds a spanning bipartite subgraph of an arbitrary graph G = (V, E): Independently for each vertex $v \in V$, Rand-Alg randomly decides if vertex v is in V_1 or V_2 , choosing V_1 with probability 1/2. It sets $E' = \{e \in E \mid e \text{ has one endpoint in } V_1 \text{ and one enpoint in } V_2\}$.

- (a) Give a lower bound for the expected number of edges in E' (in terms of |E|), when Rand-Alg is run on a graph G = (V, E).
- (b) How does your result show that any graph G=(V,E) has a spanning bipartite subgraph G'=(V,E') with $|E'|\geq |E|/2$? Explain, including how you used the probabilistic method.
- (c) Design a deterministic, polynomial time algorithm for this problem, finding a spanning bipartite subgraph G' = (V, E') of G = (V, E), where $|E'| \ge |E|/2$.