DM551

Algorithms and Probability

Joan Boyar

September 3, 2018

◆□ > < 個 > < E > < E > E 9 < 0</p>

Format

- Lectures (in English)
 - Joan Boyar
 - Joan's office hours: Mondays 9:00-9:45, Thursdays 9:00-9:45

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

- Questions in English or Danish
- Discussion sections
 - Kristine Vitting Klinkby Knudsen

Course exam

- Oral exam in January
- 2 exam assignments
 - Ist: you may work in groups of up to 3

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ ―臣 …の�?

2nd: you must do it alone

Assignments

- no working with others not in your group (talk with me or Kristine)
- no late assignments (count as not done)
- turn in via Blackboard 1 PDF file
- grading count towards final grade with January exam

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

Assignments

Begin early

- Ask if you do not understand
- Short, clear answers, but explain
- Do not reinvent the wheel it is fine to make minor modifications to something from the textbook, just give a reference

(ロ) (型) (E) (E) (E) (O)

 There are notes on how to write proofs on the course homepage

Discussion sections

Read notes/textbook sections
 When asked to prepare before coming, prepare

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

- Think about problems
- Prepare at least one problem to present

Course Topics:

Algorithm design and analysis

- Randomized algorithms
- Probabilistic analysis of algorithms

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ●

- Linear recurrence relations
- Universal hashing
- String matching
- Combinatorics and probability
 - Counting techniques
 - Discrete probability

How many license plates can exist with 2 letters followed by 5 digits?

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ ―臣 …の�?

How many license plates can exist with 2 letters followed by 5 digits?
 Answer: (26 · 26) · (10 · 10 · 10 · 10 · 10) = 26² · 10⁵

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ ―臣 …の�?

How many license plates can exist with 2 letters followed by 5 digits?
 Answer: (26 · 26) · (10 · 10 · 10 · 10 · 10) = 26² · 10⁵

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

• Product rule: How many elements are there in $A_1 \times A_2 \times ... \times A_n$?

How many license plates can exist with 2 letters followed by 5 digits?
 Answer: (26 · 26) · (10 · 10 · 10 · 10 · 10) = 26² · 10⁵

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

► Product rule: How many elements are there in A₁ × A₂ × ... × A_n? Answer: |A₁| · |A₂| · · · |A_n|.

How many license plates can exist with 2 letters followed by 5 digits?
Answer: (26, 26) (10, 10, 10, 10, 10), 262, 105

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

- ▶ Product rule: How many elements are there in $A_1 \times A_2 \times ... \times A_n$? Answer: $|A_1| \cdot |A_2| \cdots |A_n|$.
- How many bits strings are of length n?

How many license plates can exist with 2 letters followed by 5 digits?

- ▶ Product rule: How many elements are there in $A_1 \times A_2 \times ... \times A_n$? Answer: $|A_1| \cdot |A_2| \cdots |A_n|$.
- How many bits strings are of length n?
 Answer: 2 possibilities for each bit, so 2ⁿ.

How many license plates can exist with 2 letters followed by 5 digits?

ション ふゆ く 山 マ チャット しょうくしゃ

- ▶ Product rule: How many elements are there in $A_1 \times A_2 \times ... \times A_n$? Answer: $|A_1| \cdot |A_2| \cdots |A_n|$.
- How many bits strings are of length n?
 Answer: 2 possibilities for each bit, so 2ⁿ.
- How many subsets are there of a set of size n?

How many license plates can exist with 2 letters followed by 5 digits?

- ▶ Product rule: How many elements are there in $A_1 \times A_2 \times ... \times A_n$? Answer: $|A_1| \cdot |A_2| \cdots |A_n|$.
- How many bits strings are of length n?
 Answer: 2 possibilities for each bit, so 2ⁿ.
- How many subsets are there of a set of size n? Answer: There is a 1-1 correspondence between these subsets and the bit strings of length n, so 2ⁿ.

How many students got at least a grade 7 if 19 got 7, 10 got 10, and 4 got 12?

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ ―臣 …の�?

 How many students got at least a grade 7 if 19 got 7, 10 got 10, and 4 got 12?
 Answer: 33.

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ ―臣 …の�?

- How many students got at least a grade 7 if 19 got 7, 10 got 10, and 4 got 12?
 Answer: 33.
- Sum rule: How many elements are there in $A_1 \cup A_2 \cup ... \cup A_n$ if $A_i \cap A_j = \emptyset$ for $i \neq j$?

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

- How many students got at least a grade 7 if 19 got 7, 10 got 10, and 4 got 12?
 Answer: 33.
- Sum rule: How many elements are there in A₁ ∪ A₂ ∪ ... ∪ A_n if A_i ∩ A_j = Ø for i ≠ j?
 Answer: |A₁| + |A₂| + ... + |A_n|.

ション ふゆ アメリア メリア しょうくしゃ

- How many students got at least a grade 7 if 19 got 7, 10 got 10, and 4 got 12?
 Answer: 33.
- ▶ Sum rule: How many elements are there in $A_1 \cup A_2 \cup ... \cup A_n$ if $A_i \cap A_j = \emptyset$ for $i \neq j$? Answer: $|A_1| + |A_2| + ... + |A_n|$.
- What fraction of the students got at least a grade of 7 if ¹⁹/₇₁ got 7, ¹⁰/₇₁ got 10 and ⁴/₇₁ got 12?

ション ふゆ アメリア メリア しょうくしゃ

- How many students got at least a grade 7 if 19 got 7, 10 got 10, and 4 got 12?
 Answer: 33.
- ▶ Sum rule: How many elements are there in $A_1 \cup A_2 \cup ... \cup A_n$ if $A_i \cap A_j = \emptyset$ for $i \neq j$? Answer: $|A_1| + |A_2| + ... + |A_n|$.
- What fraction of the students got at least a grade of 7 if $\frac{19}{71}$ got 7, $\frac{10}{71}$ got 10 and $\frac{4}{71}$ got 12? Answer $\frac{33}{71}$.

ション ふゆ く 山 マ チャット しょうくしゃ

▶ How many functions $f : A \rightarrow B$, where |A| = m, |B| = n?

How many functions f : A → B, where |A| = m, |B| = n? Answer: There are n possible values for f(a) ∀a ∈ A, so n^m.

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

- How many functions f : A → B, where |A| = m, |B| = n? Answer: There are n possible values for f(a) ∀a ∈ A, so n^m.
- ▶ How many 1-1 functions $f : A \to B$, where |A| = m, |B| = n? Note: $m \le n$.

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

- How many functions f : A → B, where |A| = m, |B| = n? Answer: There are n possible values for f(a) ∀a ∈ A, so n^m.
- ▶ How many 1-1 functions $f : A \to B$, where |A| = m, |B| = n? Note: $m \le n$.

ション ふゆ く 山 マ チャット しょうくしゃ

Answer: n possibilities for the 1st n-1 possibilities for the 2nd n-2 possibilities for the 3rd $\dots n-m+1$ possibilities for last So $\prod_{i=0}^{m-1}(n-i) = \frac{n!}{(n-m)!}$.

- How many functions f : A → B, where |A| = m, |B| = n? Answer: There are n possible values for f(a) ∀a ∈ A, so n^m.
- ▶ How many 1-1 functions $f : A \to B$, where |A| = m, |B| = n? Note: $m \le n$.
 - Answer: *n* possibilities for the 1st
 - n-1 possibilities for the 2nd
 - n-2 possibilities for the 3rd
 - ... n m + 1 possibilities for last

ション ふゆ く 山 マ チャット しょうくしゃ

So
$$\prod_{i=0}^{m-1} (n-i) = \frac{n!}{(n-m)!}$$

► The Inclusion-Exclusion Principle. (2 sets) $|A \cup B| = |A| + |B| - |A \cap B|$

- How many functions f : A → B, where |A| = m, |B| = n? Answer: There are n possible values for f(a) ∀a ∈ A, so n^m.
- ▶ How many 1-1 functions $f : A \to B$, where |A| = m, |B| = n? Note: $m \le n$.
 - Answer: *n* possibilities for the 1st
 - n-1 possibilities for the 2nd
 - n-2 possibilities for the 3rd

... n - m + 1 possibilities for last

ション ふゆ く 山 マ チャット しょうくしゃ

So
$$\prod_{i=0}^{m-1} (n-i) = \frac{n!}{(n-m)!}$$

- ► The Inclusion-Exclusion Principle. (2 sets) $|A \cup B| = |A| + |B| - |A \cap B|$
- Tree diagrams.

The Pigeonhole Principle

Thm. [The Pigeonhole Principle] If $\geq k + 1$ pigeons go into k holes, then ≥ 1 hole has ≥ 2 pigeons.

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

The Pigeonhole Principle

Thm. [The Pigeonhole Principle] If $\geq k + 1$ pigeons go into k holes, then ≥ 1 hole has ≥ 2 pigeons.

Thm. [The Generalized Pigeonhole Principle] If N pigeons go into k holes, then ≥ 1 hole has $\geq \lceil N/k \rceil$ pigeons.

ション ふゆ アメリア メリア しょうくしゃ

The Pigeonhole Principle

Thm. [The Pigeonhole Principle] If $\geq k + 1$ pigeons go into k holes, then ≥ 1 hole has ≥ 2 pigeons.

Thm. [The Generalized Pigeonhole Principle] If N pigeons go into k holes, then ≥ 1 hole has $\geq \lceil N/k \rceil$ pigeons.

Pf. Suppose no hole contains $> \lceil N/k \rceil - 1$ pigeons. Then, the number of pigeons is

$$\leq k(\lceil N/k \rceil - 1) < k((N/k+1) - 1) = N.$$

ション ふゆ アメリア メリア しょうくしゃ

Contradiction. So ≥ 1 hole has $\geq \lceil N/k \rceil$ pigeons. \Box

Let A = {1,2,3,4,5,6,7,8}.
 Suppose B ⊂ A, |B| = 5. Must there be 2 integers in B which sum to 9?

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ ―臣 …の�?

Let A = {1,2,3,4,5,6,7,8}.
 Suppose B ⊂ A, |B| = 5. Must there be 2 integers in B which sum to 9?
 Yes. Consider {{1,8}, {2,7}, {3,6}, {4,5}}. Since there are 5 elements from these 4 subsets, some subset must have 2.

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

- Let A = {1,2,3,4,5,6,7,8}.
 Suppose B ⊂ A, |B| = 5. Must there be 2 integers in B which sum to 9?
 Yes. Consider {{1,8}, {2,7}, {3,6}, {4,5}}. Since there are
 - 5 elements from these 4 subsets, some subset must have 2.
- Suppose you have 10 red balls and 10 blue balls. How many do I have to take before I am sure I have ≥ 3 of the same color?

ション ふゆ く 山 マ ふ し マ うくの

Let A = {1,2,3,4,5,6,7,8}. Suppose B ⊂ A, |B| = 5. Must there be 2 integers in B which sum to 9? Yes. Consider {{1,8}, {2,7}, {3,6}, {4,5}}. Since there are 5 elements from these 4 subsets, some subset must have 2.
Suppose you have 10 red balls and 10 blue balls. How many do I have to take before I am sure I have ≥ 3 of the same color? 5. There are 2 sets. 5 is the least N s.t. [N/2] = 3.

ション ふゆ く 山 マ チャット しょうくしゃ

• Let $A = \{1, 2, 3, 4, 5, 6, 7, 8\}$. Suppose $B \subset A$, |B| = 5. Must there be 2 integers in B which sum to 9? Yes. Consider $\{\{1, 8\}, \{2, 7\}, \{3, 6\}, \{4, 5\}\}$. Since there are 5 elements from these 4 subsets, some subset must have 2. Suppose you have 10 red balls and 10 blue balls. How many do I have to take before I am sure I have > 3 of the same color? 5. There are 2 sets. 5 is the least N s.t. $\lceil N/2 \rceil = 3$. 3, 19, 13, 7, 12, 8, 4, 9, 29, 31, 2, 16, 1, 15, 21, 5, 6. Does this sequence have a subsequence of length 5 which is strictly increasing or strictly decreasing?

• Let $A = \{1, 2, 3, 4, 5, 6, 7, 8\}$. Suppose $B \subset A$, |B| = 5. Must there be 2 integers in B which sum to 9? Yes. Consider $\{\{1, 8\}, \{2, 7\}, \{3, 6\}, \{4, 5\}\}$. Since there are 5 elements from these 4 subsets, some subset must have 2. Suppose you have 10 red balls and 10 blue balls. How many do I have to take before I am sure I have > 3 of the same color? 5. There are 2 sets. 5 is the least N s.t. $\lceil N/2 \rceil = 3$. 3, 19, 13, 7, 12, 8, 4, 9, 29, 31, 2, 16, 1, 15, 21, 5, 6. Does this sequence have a subsequence of length 5 which is strictly increasing or strictly decreasing? Yes. 3, 19, 13, 7, 12, 8, 4, 9, 29, 31, 2, 16, 1, 15, 21, 5, 6. 3,7,8,29,31. With $n^2 + 1$ elements, must have n + 1 increasing or decreasing. $(n = 4, n + 1 = 5, n^2 + 1 = 17.)$

Ramsey Theory

Suppose there are 6 people.

Each pair is either friends or enemies.

There is a subset of 3 -all friends or all enemies.

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ ―臣 …の�?

Ramsey Theory

Suppose there are 6 people.

Each pair is either friends or enemies.

There is a subset of 3 -all friends or all enemies.

Why? Consider one person P. There are 5 other people. By the Generalized Pigeonhole Principle, either at least 3 are friends or at least 3 are enemies of P.

Suppose A, B, and C are friends of P. If any pair are friends, we have a subset of 3 friends. If they are all enemies, they form a subset of 3 enemies.

Suppose A, B, and C are enemies of P. If any pair are enemies, we have a subset of 3 enemies. If they are all friends, they form a subset of 3 friends.

Ramsey Theory

Suppose there are 6 people.

Each pair is either friends or enemies.

There is a subset of 3 -all friends or all enemies.

Why? Consider one person P. There are 5 other people. By the Generalized Pigeonhole Principle, either at least 3 are friends or at least 3 are enemies of P.

Suppose A, B, and C are friends of P. If any pair are friends, we have a subset of 3 friends. If they are all enemies, they form a subset of 3 enemies.

Suppose A, B, and C are enemies of P. If any pair are enemies, we have a subset of 3 enemies. If they are all friends, they form a subset of 3 friends.

R(m, n) number needed to ensure at least m friends or n enemies.