Permutations

Permutation - an ordering of some objects.

r-**permutation** – an ordering of *r* objects from a set.

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ ―臣 …の�?

Example: 5, 2, 3 - 3-permutation of $\{1, 2, 3, 4, 5\}$.

Permutations

Permutation - an ordering of some objects.

r-**permutation** – an ordering of *r* objects from a set.

Example: 5, 2, 3 — 3-permutation of $\{1, 2, 3, 4, 5\}$.

Thm. The number of *r*-permutations of *n* elements is

$$P(n,r) = n(n-1)(n-2)\cdots(n-r+1) = n!/(n-r)!$$

Pf. Same argument as for the number of 1-1 functions $f : A \rightarrow B$, where |A| = r, |B| = n, since A can be thought of as the position number. \Box

Combinations

r-combination – an unordered subset of r objects from a set.

Combinations

r-combination – an unordered subset of r objects from a set.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Example: $\{2,3,5\}$ — 3-combination of $\{1,2,3,4,5\}$.

Combinations

r-combination – an unordered subset of *r* objects from a set.

Example: $\{2,3,5\}$ — 3-combination of $\{1,2,3,4,5\}$.

Thm. The number of *r*-combinations of *n* elements is

$$C(n,r)=\frac{n!}{r!(n-r)!}$$

Pf. Any *r*-permutation is an ordering of an *r*-combination. There are P(r, r) = r! ways to order an *r*-permutation. Thus,

$$P(n,r) = C(n,r) \cdot P(r,r)$$

and

$$C(n,r) = \frac{n!}{(n-r)!}/r! = \frac{n!}{r!(n-r)!}$$

Example 1: A *traveling salesman* starts in city 1, has to visit 5 other cities (6 in all), each exactly once, and then return home. How many tours are there?

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

Example 1: A *traveling salesman* starts in city 1, has to visit 5 other cities (6 in all), each exactly once, and then return home. How many tours are there?

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

Answer: $P(5,5) = 5!/0! = 5 \cdot 4 \cdot 3 \cdot 2 \cdot 1 = 120.$

Example 1: A *traveling salesman* starts in city 1, has to visit 5 other cities (6 in all), each exactly once, and then return home. How many tours are there?

Answer: $P(5,5) = 5!/0! = 5 \cdot 4 \cdot 3 \cdot 2 \cdot 1 = 120$.

Example 2: Suppose there are 36 numbers in a lottery and you have to guess 7 correct to win. How many different possibilities are you choosing from?

・ロト ・ 日 ・ エ ヨ ・ ト ・ 日 ・ う へ つ ・

Example 1: A *traveling salesman* starts in city 1, has to visit 5 other cities (6 in all), each exactly once, and then return home. How many tours are there?

Answer: $P(5,5) = 5!/0! = 5 \cdot 4 \cdot 3 \cdot 2 \cdot 1 = 120.$

Example 2: Suppose there are 36 numbers in a lottery and you have to guess 7 correct to win. How many different possibilities are you choosing from?

Answer: $\frac{36!}{7!29!} = 8,347,680$. So you have less than 1 chance in 8,000,000 of winning big.

Example 1: A *traveling salesman* starts in city 1, has to visit 5 other cities (6 in all), each exactly once, and then return home. How many tours are there?

Answer: $P(5,5) = 5!/0! = 5 \cdot 4 \cdot 3 \cdot 2 \cdot 1 = 120.$

Example 2: Suppose there are 36 numbers in a lottery and you have to guess 7 correct to win. How many different possibilities are you choosing from?

Answer: $\frac{36!}{7!29!} = 8,347,680$. So you have less than 1 chance in 8,000,000 of winning big.

Notation: $\binom{n}{r} = C(n, r)$ is a binomial coefficient.

Binomial Coefficients

Thm. [Pascal's Identity] $n \ge k \ge 1$.

$$C(n+1,k) = C(n,k-1) + C(n,k)$$

◆□▶ ◆圖▶ ◆臣▶ ◆臣▶ 臣 - のへで

$$C(n+1,k) = \frac{(n+1)!}{k!(n+1-k)!}$$

= $\frac{(n+1)n!}{k!(n-k)!(n+1-k)}$
= $\frac{(n+1-k)n!}{k!(n-k)!(n+1-k)}$
+ $\frac{k \cdot n!}{k!(n-k)!(n+1-k)!}$
= $C(n,k) + \frac{n!}{(k-1)!(n+1-k)!}$
= $C(n,k) + C(n,k-1)$

Thm. $n \ge 1$. $\sum_{k=0}^{n} C(n, k) = 2^{n}$. **Pf.** Consider a set with *n* elements. There are C(n, k) different subsets of size *k*. Thus, the total number of subsets is $\sum_{k=0}^{n} C(n, k)$. The number of subsets of a set of size *n* is 2^{n} .

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Thm. [Vandermonde's Identity] $n \ge r \ge 0$. $m \ge r$.

$$C(m+n,r) = \sum_{k=0}^{r} C(m,r-k)C(n,k).$$

Pf. Suppose |A| = n, |B| = m. Let $C = A \cup B$. |C| = m + n. C(m + n, r) = number of ways to choose r elements from C. Same as choosing k from A and r - k from B. C(m, r - k)C(n, k) ways — for fixed k. $\sum_{k=0}^{r} C(m, r - k)C(n, k)$ ways in all. Thus, $C(m + n, r) = \sum_{k=0}^{r} C(m, r - k)C(n, k)$.

Thm.
$$n \ge 0$$
.
 $\binom{2n}{n} = \sum_{k=0}^{n} \binom{n}{k}^{2}$.

Pf. Recall Vandermonde's Identity:

$$C(m+n,r) = \sum_{k=0}^{r} C(m,r-k)C(n,k).$$

Let m = r = n.

$$C(n+n,n) = \sum_{k=0}^{n} C(n,n-k)C(n,k) = \sum_{k=0}^{n} {\binom{n}{k}}^{2}. \quad \Box$$

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ - 圖 - 釣��

Thm.
$$n \ge r \ge 0$$
.

$$\binom{n+1}{r+1} = \sum_{j=0}^{n} \binom{j}{r}.$$

<□▶ <□▶ < □▶ < □▶ < □▶ < □ > ○ < ○

Pascal's Triangle

◆ロト ◆昼 ▶ ◆臣 ▶ ◆臣 ▶ ○臣 ○ のへで

. . .

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

...

$$(x + y)^{1} = x + y$$

$$(x + y)^{2} = x^{2} + 2xy + y^{2}$$

$$(x + y)^{3} = x^{3} + 3x^{2}y + 3xy^{2} + y^{3}$$

$$(x + y)^{4} = x^{4} + 4x^{3}y + 6x^{2}y^{2} + 4xy^{3} + y^{4}$$

$$(x + y)^{5} = x^{5} + 5x^{4}y + 10x^{3}y^{2} + 10x^{2}y^{3} + 5xy^{4} + y^{5}$$

The Binomial Theorem

Thm. [The Binomial Theorem] $n \ge 1$. x, y variables.

$$(x+y)^{n} = \sum_{j=0}^{n} C(n,j) x^{n-j} y^{j}$$

= $\binom{n}{0} x^{n} + \binom{n}{1} x^{n-1} y + \binom{n}{2} x^{n-2} y^{2} + \dots + \binom{n}{n-1} x y^{n-1} + \binom{n}{n} y^{n}.$

The Binomial Theorem

Thm. [The Binomial Theorem] $n \ge 1$. x, y variables.

$$(x+y)^{n} = \sum_{j=0}^{n} C(n,j) x^{n-j} y^{j}$$

= $\binom{n}{0} x^{n} + \binom{n}{1} x^{n-1} y + \binom{n}{2} x^{n-2} y^{2} + \dots + \binom{n}{n-1} x y^{n-1} + \binom{n}{n} y^{n}.$

・ロト ・ 日 ・ エ ヨ ・ ト ・ 日 ・ う へ つ ・

Alternate proof:

$$(x+y)^n = (x+y)(x+y)\cdots(x+y)$$
 n terms.

Result — choose an x or a y from each term.

How many ways to get $x^{n-j}y^j$?

Choose which terms give a y - C(n, j).

Thus, $(x + y)^n = \sum_{j=0}^n C(n, j) x^{n-j} y^j$ for $n \ge 1$. \Box

Using the binomial theorem

Thm.
$$n \ge 1$$
. $\sum_{k=0}^{n} C(n,k) = 2^{n}$.
Pf. $2^{n} = (1+1)^{n} = \sum_{k=0}^{n} C(n,k) 1^{n-k} 1^{k} = \sum_{k=0}^{n} C(n,k)$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Using the binomial theorem

Thm.
$$n \ge 1$$
. $\sum_{k=0}^{n} C(n,k) = 2^{n}$.
Pf. $2^{n} = (1+1)^{n} = \sum_{k=0}^{n} C(n,k) 1^{n-k} 1^{k} = \sum_{k=0}^{n} C(n,k)$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Thm.
$$n \ge 1$$
. $\sum_{k=0}^{n} (-1)^{k} C(n, k) = 0$.
Pf. $0 = (1 + (-1))^{n} = \sum_{k=0}^{n} C(n, k) 1^{n-k} (-1)^{k} = \sum_{k=0}^{n} (-1)^{k} C(n, k)$

Example

Experiment: choose balls from: 3 red. 4 green. 5 blue.

How many ways to get 1 red ball and 2 green balls? $3 \cdot 4^2$

(ロ) (型) (E) (E) (E) (O)

Note: not interested in order.

Represent result as: $n_1 \mid n_2 \mid n_3$, where

- n_1 number of red balls
- n_2 number of green balls
- n_3 number of blue balls

Example

We wanted: $1 \mid 2 \mid 0$.

Could also represent as *|**|.

How many distinct results are there if 3 balls chosen? $(n_1 \mid n_2 \mid n_3)$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Example

We wanted: $1 \mid 2 \mid 0$.

Could also represent as *|**|.

How many distinct results are there if 3 balls chosen? $(n_1 \mid n_2 \mid n_3)$

・ロト ・ 日 ・ エ ヨ ・ ト ・ 日 ・ う へ つ ・

The number of ways to write down 3 *s and 2 |s|.

(For example, *|**| or |***|.)

There are 5 places. Choose 3 places for stars.

Answer: $\binom{5}{3} = \frac{5!}{3!2!} = 10.$

Example

Same experiment with n types of balls and r choices.

(An *r*-combination from *n* elements, with repetition.)

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

There are r stars and n-1 bars.

Number of distinct results is $\binom{n+r-1}{r}$.

Example

Same experiment with n types of balls and r choices.

(An r-combination from n elements, with repetition.)

There are r stars and n-1 bars.

Number of distinct results is $\binom{n+r-1}{r}$.

Example

How many ways can you choose k integers

$$\geq 0$$
, $(n_1, n_2, ..., n_k)$, such that $\sum_{i=1}^k n_i = n$?

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

Example

Same experiment with n types of balls and r choices.

(An r-combination from n elements, with repetition.)

There are r stars and n-1 bars.

Number of distinct results is $\binom{n+r-1}{r}$.

Example

How many ways can you choose k integers

$$\geq$$
 0, $(n_1, n_2, ..., n_k)$, such that $\sum_{i=1}^k n_i = n$?

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

Answer: $\binom{k+n-1}{n}$.

Example

How many nonnegative solutions are there to

$$n_1 + n_2 + n_3 + n_4 = 7?$$

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ ―臣 …の�?

Answer: $\binom{4+7-1}{7} = \frac{10!}{7!3!} = 120.$

A bag with 3 red balls, 4 green balls, and 5 blue balls. Consider all red balls the same, etc. How many orderings are there of the balls?

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

A bag with 3 red balls, 4 green balls, and 5 blue balls. Consider all red balls the same, etc. How many orderings are there of the balls?

There are (3+4+5)! orderings.

Given one ordering, $(x_1, x_2, ..., x_{12})$,

there are 3!4!5! which are identical to it.

The number of distinct orderings is $\frac{12!}{3!4!5!} = 27,720.$

Example

How many ways to put n pigeons in k holes,

if the *i*th hole should have n_i pigeons?

Answer: $\binom{n}{n_1}$ for the first hole. $\binom{n-n_1}{n_2}$ for the second hole. $\binom{n-n_1-n_2}{n_3}$ for the third hole.

Etc. Multiply these together to get:

 $\frac{n!}{n_1!n_2!\cdots n_k!}$

うして ふゆう ふほう ふほう うらつ