Conditional Probability

Thm. [Baye's Theorem] For events A, B, with p(A) > 0,
p(B) >0, p(A|B) = 2ARLEIA)

Pf. By the def of conditional probability,

p(AN B) = p(B)p(A|B).

p(AN B) = p(A)p(BIA).

So p(B)p(AIB) = p(A)p(BIA).

Divide both sides by p(B). O
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Conditional Probability

Thm. [Baye's Theorem] For events A, B, with p(A) > 0,
p(B) >0, p(A|B) = 2ARLEIA)

Pf. By the def of conditional probability,

p(AN B) = p(B)p(A|B).

p(AN B) = p(A)p(BIA).

So p(B)p(AIB) = p(A)p(BIA).

Divide both sides by p(B). O

Example: With 2 fair dice, what is the probability that the sum is
7, given that both dice are > 37

Answer: p(sum is 7 | both >3) = p(sum is 7)';((bb;’t’;h§33)| sumis7) _
=1/8.

o=
=

WIN|
WIN|



Expectations

Recall:

Def. A random variable is a function f : S — R.

Def. For a finite sample space S = {s1, sy, ..., 5p}, the expected
value of the random variable X(s) is

E(X) = p(s)X(5).
i=1

Def. For a countably infinite sample space S = {s; | i > 1}, the
expected value of the random variable X(s) is

E(X) = 2221 p(si)X(si).



Expectations

Recall:

Def. A random variable is a function f : S — R.

Def. For a finite sample space S = {s1, sy, ..., 5p}, the expected
value of the random variable X(s) is

E(X) = p(s)X(5).
i=1

Def. For a countably infinite sample space S = {s; | i > 1}, the
expected value of the random variable X(s) is

E(X) = 2221 p(si)X(si).

Example: What is the expected number of successes in n Bernoulli
trials? Probability of success = p. Probability of failure =

g=1—p.



Expectations

Answer:

E[X] = Zk - p(X = k)
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Expectations

n
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Expectations

Example: What is the expected value of the first successful
Bernoulli trial?
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Example: What is the expected value of the first successful
Bernoulli trial?

Answer:
Z i lp = Z g1 — Z iq
i=1 i=1 i=1
S G+Dd =S i (G=i-1)
j=0 i=1
=1+ (i+1-))¢
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Expectations

Example: What is the expected value of the first successful
Bernoulli trial?

Answer:
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With a fair die, the expected number of throws before a 1 is 6.



