Expectations

Example: What is the expected value of the first successful
Bernoulli trial?
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With a fair die, the expected number of throws before a 1 is 6.
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A linear function has the form
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Linearity of Expectations

A linear function has the form
f(Xl,X2, ...,Xn) = a9+ a1 X1+ axXo+ ...+ anX,

where a; e R for 0 </ < n.

Thm. Let f be a linear function, S be a sample space, and
X1, X2, ..., X, be random variables defined on S. Then,
E[F (X0, Xas o Xo)] = F(EDX), EDEG], o ETX))



Linearity of Expectations

Pf. Let f(Xq,...,Xp) = a0+ a1 Xy + ... + ap X, where a; € R for
0<i<n. Then,

E[f(X1, . Xa)] =D p(s)F(Xa(S), ... Xa(s))
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Linear Search Algorithm

procedure linear search(x, a1, a2, ..., an)
i+ 1

while (i < nand x # a;) i < i+1

{ Either i =n+1or x = a;}

if i < n then location < i
else location + 0
return location



Linear Search Algorithm

procedure linear search(x, a1, a2, ..., an)
i+ 1

while (i < nand x # a;) i < i+1

{ Either i =n+1or x = a;}

if i < n then location < i

else location + 0
return location

Worst case: n comparisons of elements (2n + 1 comparisions).



Insertion Sort Algorithm

procedure InsertionSort(List):
{ Input: List is a list }
{ Output: List, with same entries, but in nondecreasing order }

N =2
while (N < length(List)
Pivot := Nth entry
j= N-1
while (j > 0 and jth entry > Pivot)
move jth entry to loc. j +1
Jj=j-1
place Pivot in j + 1st loc.
N = N+1
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Expectation, Variance, Standard Deviation

If two random variables X and Y are independent, then
E[XY] = E[X]- E[Y].

The variance of a random variable is V[X] = E[(X — E[X])?].

V[X] = E[X? — 2XE[X] + E?[X]].

By the linearity of expectations, this is
E[X?] — 2E[XE[X]] + E[E?[X]].

Since E[X] is a real number, this is E[X?] — 2E2[X] + E?[X].
Thus, V[X] is also E[X?] — E?[X].

If X and Y are independent random variables, then V[X + Y| =
V[X]+ V[Y]. If X1, Xz, ..., X, are pairwise independent random
variables, then V[>_7 ; Xj] = >, V[Xi].

The standard deviation of a random variable is the positive
square root of the variance.
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The variance of a geometric distribution can be shown to q/p?
(recall that the expectation is 1/p).
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Variance

The variance of a geometric distribution can be shown to q/p?
(recall that the expectation is 1/p).

Consider Bernoulli trials: X;.
How many successes in the jth trial?

Must be either 0 or 1, so E[X?] = E[X/] = p.

The variance of the binomial distribution —

VIX] = V[E7:1 Xi] = 27:1 VIXi]

since the X; are pairwise independent.

VIXi] = E[X?] - E’[Xi] = p— P> = pq .

Thus, for the binomial distribution, V[X] =>""_; pg = npq.



Chebyshev's Inequaltiy
Thm. [Chebyshev’s Inequality] Let X be a random variable on
sample space S, with probability function p, and r > 0. Then

p(IX(s) = EIX]| = r) < VIX]/r?
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sample space S, with probability function p, and r > 0. Then

p(IX(s) = EIX]| = r) < VIX]/r?

Pf. Let A= {s €S } |X(s) — E(X)| > r}.
To show (for event A): p(A) < V(X)/r.

V(X) = Yres(X(s) — E[X])*p(s)

DsealX(s) — EIX])?p(s) + Xsga(X(s) — E[X])?p(s)

> Yeza(X(s) — E[X])?p(s) > 0.

» Fors € A, (X(s) — E(X))? > r2.

> PeealX(s) = EIX])?p(s) = e r?p(s)-
> V(X) = Xear®pls).



Chebyshev's Inequaltiy

Thm. [Chebyshev’s Inequality] Let X be a random variable on
sample space S, with probability function p, and r > 0. Then

p(IX(s) = EIX]| = r) < VIX]/r?

Pf. Let A= {s €s } IX(s) — E(X)| > r}.

To show (for event A): p(A) < V(X)/r.

V(X) = Xres(X(s) = EIX])?p(s)
=2 sealX(s) = EIX])?p(s) + Fsga(X(s) — EIX])*p(s)
> ZSQA(X(S
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