
Chebyshev’s Inequaltiy

Thm. [Chebyshev’s Inequality] Let X be a random variable on
sample space S , with probability function p, and r > 0. Then

p(|X (s)− E [X ]| ≥ r) ≤ V [X ]/r2



Chebyshev’s Inequaltiy

Deviation from the mean when counting tails

X — random variable counting number of tails in n tosses of a fair
coin.

E [X ] = np = n/2

V [X ] = npq = n/4

Suppose r =
√
n.

p(|X (s)− E [X ]| ≥ r) ≤ V [X ]/r2

p(|X (s)− n/2| ≥
√
n) ≤ (n/4)/n = 1/4

Results are not always useful, but this worked OK.
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The Principle of Inclusion-Exclusion
A1,A2, ...,An finite sets.

|A1 ∪ A2| = |A1|+ |A2| − |A1 ∩ A2|.

|A1 ∪ A2 ∪ A3| = |A1|+ |A2|+ |A3| − |A1 ∩ A2|
−|A1 ∩ A2| − |A1 ∩ A2|+ |A1 ∩ A2 ∩ A3|.

Thm.[The Principle of Inclusion-Exclusion]

|A1 ∪ A2 ∪ ... ∪ An|
=
∑

1≤i≤n
|Ai | −

∑
1≤i<j≤n

|Ai ∩ Aj |

+
∑

1≤i<j<k≤n
|Ai ∩ Aj ∩ Ak |

−...+ (−1)n+1|A1 ∩ A2 ∩ ... ∩ An|.

Pf. (by induction on n)

Basis step: n = 2. Proven earlier.

Inductive step:



Applications
Counting number of elements with or without the properties
P1,P2, ...,Pn:

N(Pi1Pi2 ...Pik ) – number of elements with properties Pi1 ,Pi2 , ...,Pik

N(P ′i1P
′
i2
...P ′ik ) – number of elements with none of the properties

Pi1 ,Pi2 , . . . ,Pik .

Ai — subset of elements with property Pi .

N — total number of elements

N(Pi1Pi2 ...Pik ) = |Ai1 ∩ Ai2 ∩ ... ∩ Aik |
N(P ′i1P

′
i2
...P ′ik ) = N − |Ai1 ∪ Ai2 ∪ ... ∪ Aik |

N(P ′i1P
′
i2
...P ′ik ) = N −

∑
1≤i≤n

N(Pi ) +
∑

1≤i<j≤n
N(PiPj)−

. . .+ (−1)nN(P1,P2, ...,Pn).
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How many solutions are there to n1 + n2 + n3 + n4 = 7, if you must
have n1, n2, n3 ≤ 3 and n4 ≤ 4.

Property P1 is n1 > 3.

Property P2 is n2 > 3.

Property P3 is n3 > 3.

Property P4 is n4 > 4.

N(P ′1P
′
2P
′
3P
′
4) = N

− N(P1)− N(P2)− N(P3)− N(P4)

+ N(P1P2) + N(P1P3) + N(P1P4)

+ N(P2P3) + N(P2P4) + N(P3P4)

− N(P1P2P3)− N(P1P2P4)

− N(P1P3P4)− N(P2P3P4)

+ N(P1P2P3P4)



I N = total number =
(4+7−1

7

)
= 120.

I N(P1) = number with n1 ≥ 4 =
(4+3−1

3

)
= 20

I N(P2) = N(P3) = N(P1) = 20
I N(P4) = number with n4 ≥ 5 =

(4+2−1
2

)
= 10

I N(P1P2) = number with n1 ≥ 4 and n2 ≥ 4.
This is impossible, so 0.

I All intersections of at least 2 are impossible.

Thus, N(P ′1P
′
2P
′
3P
′
4) = 120− 3(20)− 10+ 0 = 50.
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The Sieve of Eratosthenes
To get a list of primes ≤ B :

Create an empty list P .
Create a list L of the integers 2..B .
while L is not empty do

Remove p — smallest element in L.
Insert p in P .
Delete all multiples of p from L.

How many primes are there ≤ 19?

How many numbers are in P if B = 19?

Property Pi (x) is: ith prime< x ≤ 19
and ith prime divides x .

Every composite ≤ 19 is divisible by a prime ≤
√
19 ≤ 5.



The Sieve of Eratosthenes
Answer: N(P ′1P

′
2P
′
3) = N

− N(P1)− N(P2)− N(P3)

+ N(P1P2) + N(P1P3) + N(P2P3)− N(P1P2P3)

I N = 18.
I N(P1) = 8 (2 divides x)
I N(P2) = 5 (3 divides x)
I N(P3) = 2 (5 divides x)
I N(P1P2) = 3 (6 divides x)
I N(P1P3) = 1 (10 divides x)
I N(P2P3) = 1 (15 divides x)
I N(P1P2P3) = 0 (30 divides x)

N(P ′1P
′
2P
′
3) = 18− 8− 5− 2+ 3+ 1+ 1− 0 = 8.

(Same result if P3 is not included.)



Derangements
Example: Peter likes betting. He hears:

I Team A is expected to win.
I Team B is expected to be 2nd.
I Team C is expected to be 3rd.
I Team D is expected to be 4th.
I Team E is expected to be 5th.

Peters bets on these 5 events.

In how many ways can he lose all bets?

A derangement is a permutation with no
object in its original position.

Property Pi — place i was correct.

Want D = N(P ′1P
′
2P
′
3P
′
4P
′
5).



Derangements

D = N −
5∑

i=1

N(Pi ) +
∑

1≤i<j≤5

N(PiPj)−
∑

1≤i<j<k≤5

N(PiPjPk)

+
∑

1≤i<j<k<l≤5

N(PiPjPkPl)− N(P1P2P3P4P5).

N = 5!.

N(Pi ) = (5− 1)! ∀i .
N(PiPj) = (5− 2)! ∀i , j .
N(PiPjPk) = (5− 3)! ∀i , j , k .
N(PiPjPkPl) = (5− 4)! ∀i , j , k , l .
N(P1P2P3P4P5) = (5− 5)!.

How many terms are there in each sum?



Derangements
5∑

i=1

N(Pi ) —
(5
1

)
.∑

1≤i<j≤5

N(PiPj) —
(5
2

)
.∑

1≤i<j<k≤5

N(PiPjPk) —
(5
3

)
.∑

1≤i<j<k<l≤5

N(PiPjPkPl) —
(5
4

)
.

N(P1P2P3P4P5) —
(5
5

)
.

D = 5!− (5− 1)! 5!
1!(5−1)! + (5− 2)! 5!

2!(5−2)!

− (5− 3)! 5!
3!(5−3)! + (5− 4)! 5!

4!(5−4)! − (5− 5)! 5!
5!(5−5)!

D = 5!
(
1− 1

1! +
1
2! −

1
3! +

1
4! −

1
5!

)
= 44.

Thm. The number of derangements of a set with n elements is

Dn = n!

(
1− 1

1!
+

1
2!
− ...+ (−1)n 1

n!

)



Derangements
Suppose all permutations were equally likely.

What is the probability of a derangement?

Dn/n! = 1− 1
1!

+
1
2!
− ...+ (−1)n 1

n!

The infinte sum

1− 1
1!

+
1
2!
− ...+ (−1)n 1

n!
+ ...

gives 1/e ≈ 0.368.

1
e −

1
(n+1)! ≤

Dn
n! ≤

1
e + 1

(n+1)! .

The probability of at least one object being fixed is approximately
1− 1/e ≈ 0.632.
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