Selection Algorithm

Assume all elements distinct.

procedure Select(S, k): { Input: S a set of keys, |S| = n; $1 \le k \le n$, an integer } { Output: $a \in S$, with k keys in $S \leq a$ and n - k keys > k } $S^- = \emptyset \{ S^- \text{ contains those found } < \text{splitter} \}$ $S^+ = \emptyset$ { S^+ contains those found > splitter } choose $a_i \in \mathcal{S}$ for each $a_i \in S$, $j \neq i$ do if $a_i < a_i$ **then** put a_i in $S^$ else put a_i in S^+ if $|S^{-}| = k - 1$ then return (a_i) else if $|S^-| > k$ then Select(S^-, k) else Select $(S^+, k-1-|S^-|)$

Quicksort — Same form as Select

Assume all elements distinct.

```
procedure Quicksort(S):
{ Input: S a set of keys, |S| = n }
{ Output: The keys from S in nondecreasing order }
     if |S| < 3
           then Sort S and output the sorted list
           else
                S^- = \emptyset: S^+ = \emptyset
                choose a_i \in \mathcal{S}
                for each a_i \in S, j \neq i do
                      if a_i < a_i
                            then put a_i in S^-
                            else put a_i in S^+
                Output Quicksort(S^{-})
                 Output a_i
                 Output Quicksort(S^+)
```

Quicksort — Same form as Select

Assume all elements distinct.

procedure Modified Quicksort(S): if $|S| \le 3$ then Sort S and output the sorted list else while no central splitter has been found $S^- = \emptyset; S^+ = \emptyset$ choose $a_i \in_R S$ for each $i \in R$

for each $a_j \in S$, $j \neq i$ do if $a_j < a_i$ then put a_j in $S^$ else put a_j in S^+ if $|S^-| \ge |S|/4$ and $|S^+| \ge |S|/4$ then a_i is a central splitter Output Modified Quicksort(S^-) Output A_i Output Modified Quicksort(S^+)