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(Poll) What do you think about the speed of the lectures?

(Poll) What do you think about what I mark on slides?

(Poll) What do you think about this type of poll compared to
Socrative?

Do you have suggestions?

I will be using Blackboard’s Discussion Board to tell when there are
corrections to the slides.
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Discrete Probability

Fact. If all outcomes of a finite sample space S are equally likely,
the probability of an event E is p(E ) = |E |/|S |. This distribution
of probabilities is called the uniform distribution.

Def. Events A1,A2, ... are pairwise mutually exclusive if
Ai ∩ Aj = ∅ for i 6= j .

Suppose sample space S = {x1, x2, ..., xn}, and probability of xi is
p(xi ). Must have

I 0 ≤ p(xi ) ≤ 1 ∀i
I
∑n

i=1 p(xi ) = 1.
I For any events A1,A2, ...Ak that are pairwise mutually

exclusive, p(
⋃
i

Ai ) =
∑
i

p(Ai ).

Then the function p is a probability distribution.
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Discrete Probability

Suppose sample space S = {xi | i ≥ 1} (countable). Then,

I 0 ≤ p(xi ) ≤ 1 ∀i
I
∑∞

i=1 p(xi ) = 1.
I For any events A1,A2, ... that are pairwise mutually exclusive,

p(
⋃
i

Ai ) =
∑
i

p(Ai ).

Example:

experiment — a fair coin is flipped until “heads”.

sample space — S = {H,TH,TTH, ...,T nH, ...}.
event — 1 sequence of flips

probability — p(T nH) = (1/2)n+1 for n ≥ 0.

Is this a probability distribution?
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Discrete Probability
Suppose the coin is biased — p(heads) = p; p(tails) = q = 1− p.

p(T nH) = qnp — the geometric distribution

Is 0 ≤ qnp ≤ 1? (Poll)

Is this a probability distribution?

The probability of event E is

p(E ) =
∑
xi∈E

p(xi )

.
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Discrete Probability

Example: For fair 6-sided dice: p({5, 6}) = 1/3.

Suppose a die is loaded so

p(1) = 1/3 p(2) = 2/15 p(3) = 2/15
p(4) = 2/15 p(5) = 2/15 p(6) = 2/15

Then
∑6

i=1 p(i) = 1/3+ 5(2/15) = 1.

For this die, p({5, 6}) = 4/15 < 1/3.

With 2 of these dice p(sum = 7) is

2 · 1
3
· 2
15

+ 4 · 2
15
· 2
15

= 4/25 < 1/6
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Discrete Probability

Thm. p(E ) = 1− p(E ).

Pf.
∑n

i=1 p(xi ) = 1 = p(E ) + p(E ).

Thus, P(E ) = 1− p(E ). 2

Substituting ∞ for n changes nothing.

Thm. p(E1 ∪ E2) = p(E1) + p(E2)− p(E1 ∩ E2).

Pf.

p(E1 ∪ E2) =
∑

xi∈E1∪E2

p(xi )

=
∑
xi∈E1

p(xi ) +
∑
xi∈E2

p(xi )−
∑

xi∈E1∩E2

p(xi )

= p(E1) + p(E2)− p(E1 ∩ E2). 2
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Conditional Probability

Def. The conditional probability of E given F is

p(E |F ) = p(E ∩ F )

p(F )

Example: With 2 fair dice, what is the probability that the sum is
7, given that both dice are ≥ 3?

Answer: p(sum is 7 and both ≥ 3)/p(both ≥ 3) = 2 · 1
6 ·

1
6/(

2
3 ·

2
3)

= 1/8.
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Conditional Probability

Monte Hall 3-Door Puzzle: Suppose you are on a game show.

The host asks you to choose 1 of 3 doors for a prize.

You choose door A.

The host opens another door B . No big prize there.

You are told you can switch your choice.

Should you switch? (Poll)

Answer: Yes.

p(prize behind A | not behind B) = p(A ∧ ¬B)/p(¬B) = 1/2 is
not the answer. B was chosen after A.

p(prize behind A | the host chose B) is the correct probability.

You could have chosen 3 doors.

If you chose the prize, the host has 2 choices; otherwise only 1.
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Conditional Probability

Your choice Location of Prize Prob of B
A A (1/3)(1/2)
A B (1/3)(0)
A C (1/3)(1)

So p(prize behind A and host chose B) = (1/3)(1/2) = 1/6.

p(host chose B) = (1/3)(1/2)+(1/3) = 1/2.

Thus, p(prize behind A | the host chose B) = (1/6)/(1/2)=1/3.

But p(prize behind C | the host chose B) = 2/3.
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Conditional Probability

Another tricky example: Suppose you know that A has two
children and you are told that one is a girl.

What is the probability that the other is also a girl?

Wrong answer: 1/2 since there is always a 50-50 chance for a boy
or a girl. This is wrong even assuming that the probabilities are
exactly 50-50 and that the events are independent.

This is only correct if you said the oldest or the youngest, etc.

Correct answer: 1/3.

There are 4 possibilities: (G,G), (G,B), (B,G), (B,B).

“One is a girl” only rules out the last!.
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Conditional Probability

Def. E and F are independent iff p(E ∩ F ) = p(E )p(F ).

Fact: If E and F are independent, then
p(E |F ) = p(E ∩ F )/p(F ) = p(E ).

Example: With 2 fair dice, the probability that the sum is 7 is not
independent of both dice being ≥ 3.

p(sum is 7 and both ≥ 3)/p(both ≥ 3) = 2 · 1
6 ·

1
6/(

2
3 ·

2
3) =

1/8 6= 1/6 = p(sum is 7).

Example: The probability that the sum of the first two dice is 7
given that both dice are ≥ 3 is independent of the probability of a
third die being 1 or 2.
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Bernouli Trials

Bernoulli trial: – an experiment with 2 outcomes; success with
probability p, failure with probability q = 1− p.

Bernoulli trials: — k independent repetitions of a Bernoulli trial.

Example: Consider 2 fair dice. Throw k times. What is the
probability that the first time you get a sum of 7 is on throw j ,
where j ≤ k .

Answer: (5
6)

j−1(1
6).

This is the same as the biased coin with probabilities p of “heads”
and q = 1− p of “tails”. The answer is from the geometric
distribution: qj−1p.

Try tree diagrams.
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Bernouli Trials

Thm. The probability of k successes in n independent Bernoulli
trials is

(n
k

)
pkqn−k .

Pf. The outcome is (x1, x2, ..., xn), where

xi =

{
S , if the ith trial is success
F , if the ith trial is failure

p((x1, x2, ..., xn)), with k successes and n − k failures is pkqn−k .

There are
(n
k

)
outcomes with k successes and n − k failures.

The probability is
(n
k

)
pkqn−k . 2

The binomial distribution is b(k ; n, p) =
(n
k

)
pkqn−k .

Note
∑n

k=0
(n
k

)
pkqn−k = (p + q)n = 1.
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