DM551

Algorithms and Probability

September 17, 2018

(ロ)、(型)、(E)、(E)、 E) のQ()

・ロト・4日ト・4日ト・4日・9000

(Poll) What do you think about what I mark on slides?

(Poll) What do you think about what I mark on slides?

(Poll) What do you think about this type of poll compared to Socrative?

・ロト・日本・ヨト・ヨト・日・ つへぐ

(Poll) What do you think about what I mark on slides?

(Poll) What do you think about this type of poll compared to Socrative?

Do you have suggestions?

(Poll) What do you think about what I mark on slides?

(Poll) What do you think about this type of poll compared to Socrative?

Do you have suggestions?

I will be using Blackboard's Discussion Board to tell when there are corrections to the slides.

Fact. If all outcomes of a finite sample space S are equally likely, the probability of an event E is p(E) = |E|/|S|. This distribution of probabilities is called the *uniform distribution*.

Fact. If all outcomes of a finite sample space S are equally likely, the probability of an event E is p(E) = |E|/|S|. This distribution of probabilities is called the *uniform distribution*.

Def. Events $A_1, A_2, ...$ are *pairwise mutually exclusive* if $A_i \cap A_j = \emptyset$ for $i \neq j$.

Fact. If all outcomes of a finite sample space S are equally likely, the probability of an event E is p(E) = |E|/|S|. This distribution of probabilities is called the *uniform distribution*.

Def. Events $A_1, A_2, ...$ are *pairwise mutually exclusive* if $A_i \cap A_j = \emptyset$ for $i \neq j$.

Suppose sample space $S = \{x_1, x_2, ..., x_n\}$, and probability of x_i is $p(x_i)$. Must have

▶
$$0 \le p(x_i) \le 1$$
 $\forall i$

$$\triangleright \sum_{i=1}^n p(x_i) = 1.$$

For any events $A_1, A_2, ..., A_k$ that are pairwise mutually exclusive, $p(\bigcup_i A_i) = \sum_i p(A_i)$.

Then the function p is a probability distribution.

Suppose sample space $S = \{x_i \mid i \ge 1\}$ (countable). Then,

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

Suppose sample space $S = \{x_i \mid i \ge 1\}$ (countable). Then,

►
$$0 \le p(x_i) \le 1$$
 $\forall i$

$$\sum_{i=1}^{\infty} p(x_i) = 1.$$

For any events $A_1, A_2, ...$ that are pairwise mutually exclusive, $p(\bigcup_i A_i) = \sum_i p(A_i).$

Example:

experiment — a fair coin is flipped until "heads". sample space — $S = \{H, TH, TTH, ..., T^nH, ...\}.$ event — 1 sequence of flips probability — $p(T^nH) = (1/2)^{n+1}$ for $n \ge 0$.

Suppose sample space $S = \{x_i \mid i \ge 1\}$ (countable). Then,

►
$$0 \le p(x_i) \le 1$$
 $\forall i$

$$\sum_{i=1}^{\infty} p(x_i) = 1.$$

For any events $A_1, A_2, ...$ that are pairwise mutually exclusive, $p(\bigcup_i A_i) = \sum_i p(A_i).$

Example:

experiment — a fair coin is flipped until "heads". sample space — $S = \{H, TH, TTH, ..., T^nH, ...\}$. event — 1 sequence of flips probability — $p(T^nH) = (1/2)^{n+1}$ for $n \ge 0$.

Is this a probability distribution?

Suppose the coin is biased — p(heads) = p; p(tails) = q = 1 - p.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

 $p(T^nH) = q^np$ — the geometric distribution

Suppose the coin is biased — p(heads) = p; p(tails) = q = 1 - p.

 $p(T^nH) = q^np$ — the geometric distribution

Is $0 \le q^n p \le 1$? (Poll)

Suppose the coin is biased — p(heads) = p; p(tails) = q = 1 - p.

 $p(T^nH) = q^np$ — the geometric distribution

Is $0 \le q^n p \le 1$? (Poll)

Is this a probability distribution?

Suppose the coin is biased — p(heads) = p; p(tails) = q = 1 - p.

 $p(T^nH) = q^np$ — the geometric distribution

Is $0 \le q^n p \le 1$? (Poll)

Is this a probability distribution?

The probability of event E is

$$p(E) = \sum_{x_i \in E} p(x_i)$$

Example: For fair 6-sided dice: $p({5,6}) = 1/3$.

Suppose a die is loaded so

$$p(1) = 1/3$$
 $p(2) = 2/15$ $p(3) = 2/15$
 $p(4) = 2/15$ $p(5) = 2/15$ $p(6) = 2/15$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Then $\sum_{i=1}^{6} p(i) = 1/3 + 5(2/15) = 1$. For this die, $p(\{5,6\}) = 4/15 < 1/3$.

Example: For fair 6-sided dice: $p({5,6}) = 1/3$.

Suppose a die is loaded so

$$p(1) = 1/3$$
 $p(2) = 2/15$ $p(3) = 2/15$
 $p(4) = 2/15$ $p(5) = 2/15$ $p(6) = 2/15$

Then
$$\sum_{i=1}^{6} p(i) = 1/3 + 5(2/15) = 1$$
.
For this die, $p(\{5,6\}) = 4/15 < 1/3$.

With 2 of these dice p(sum = 7) is

$$2\cdot\frac{1}{3}\cdot\frac{2}{15}+4\cdot\frac{2}{15}\cdot\frac{2}{15}=4/25<1/6$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Thm. $p(\overline{E}) = 1 - p(E)$. Pf. $\sum_{i=1}^{n} p(x_i) = 1 = p(E) + p(\overline{E})$. Thus, $P(\overline{E}) = 1 - p(E)$. \Box

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

Thm.
$$p(\overline{E}) = 1 - p(E)$$
.
Pf. $\sum_{i=1}^{n} p(x_i) = 1 = p(E) + p(\overline{E})$.
Thus, $P(\overline{E}) = 1 - p(E)$.

Substituting ∞ for *n* changes nothing.

◆□▶ ◆□▶ ◆ □▶ ◆ □ ● ● ● ●

Thm.
$$p(\overline{E}) = 1 - p(E)$$
.
Pf. $\sum_{i=1}^{n} p(x_i) = 1 = p(E) + p(\overline{E})$.
Thus, $P(\overline{E}) = 1 - p(E)$. \Box

Substituting ∞ for *n* changes nothing.

Thm.
$$p(E_1 \cup E_2) = p(E_1) + p(E_2) - p(E_1 \cap E_2)$$
.
Pf.

$$p(E_1 \cup E_2) = \sum_{x_i \in E_1 \cup E_2} p(x_i)$$

= $\sum_{x_i \in E_1} p(x_i) + \sum_{x_i \in E_2} p(x_i) - \sum_{x_i \in E_1 \cap E_2} p(x_i)$
= $p(E_1) + p(E_2) - p(E_1 \cap E_2)$. \Box

Def. The conditional probability of E given F is

$$p(E|F) = \frac{p(E \cap F)}{p(F)}$$

Def. The conditional probability of E given F is

$$p(E|F) = rac{p(E \cap F)}{p(F)}$$

Example: With 2 fair dice, what is the probability that the sum is 7, given that both dice are ≥ 3 ?

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Def. The conditional probability of E given F is

$$p(E|F) = rac{p(E \cap F)}{p(F)}$$

Example: With 2 fair dice, what is the probability that the sum is 7, given that both dice are ≥ 3 ?

Answer: $p(\text{sum is 7 and both} \ge 3)/p(\text{both} \ge 3) = 2 \cdot \frac{1}{6} \cdot \frac{1}{6}/(\frac{2}{3} \cdot \frac{2}{3}) = 1/8.$

Monte Hall 3-Door Puzzle: Suppose you are on a game show.

The host asks you to choose 1 of 3 doors for a prize.

You choose door A.

The host opens another door *B*. No big prize there.

You are told you can switch your choice.

Should you switch? (Poll)

Monte Hall 3-Door Puzzle: Suppose you are on a game show. The host asks you to choose 1 of 3 doors for a prize. You choose door *A*.

The host opens another door *B*. No big prize there.

You are told you can switch your choice.

Should you switch? (Poll)

Answer: Yes.

 $p(\text{prize behind } A \mid \text{not behind } B) = p(A \land \neg B)/p(\neg B) = 1/2 \text{ is not the answer. } B \text{ was chosen after } A.$

Monte Hall 3-Door Puzzle: Suppose you are on a game show. The host asks you to choose 1 of 3 doors for a prize. You choose door *A*.

The host opens another door *B*. No big prize there.

You are told you can switch your choice.

Should you switch? (Poll)

Answer: Yes.

 $p(\text{prize behind } A \mid \text{not behind } B) = p(A \land \neg B)/p(\neg B) = 1/2 \text{ is not the answer. } B \text{ was chosen after } A.$

 $p(\text{prize behind } A \mid \text{the host chose } B)$ is the correct probability.

You could have chosen 3 doors.

If you chose the prize, the host has 2 choices; otherwise only 1.

Your choice	Location of Prize	Prob of B
A	A	(1/3)(1/2)
A	В	(1/3)(0)
A	С	(1/3)(1)

Your choice	Location of Prize	Prob of B
A	A	(1/3)(1/2)
A	В	(1/3)(0)
A	С	(1/3)(1)

So p(prize behind A and host chose B) = (1/3)(1/2) = 1/6. p(host chose B) = (1/3)(1/2) + (1/3) = 1/2.Thus, $p(\text{prize behind } A \mid \text{the host chose } B) = (1/6)/(1/2) = 1/3.$ But $p(\text{prize behind } C \mid \text{the host chose } B) = 2/3.$

Another tricky example: Suppose you know that *A* has two children and you are told that one is a girl.

What is the probability that the other is also a girl?

Another tricky example: Suppose you know that *A* has two children and you are told that one is a girl.

What is the probability that the other is also a girl?

Wrong answer: 1/2 since there is always a 50-50 chance for a boy or a girl. This is wrong even assuming that the probabilities are exactly 50-50 and that the events are independent.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

This is only correct if you said the oldest or the youngest, etc.

Another tricky example: Suppose you know that *A* has two children and you are told that one is a girl.

What is the probability that the other is also a girl?

Wrong answer: 1/2 since there is always a 50-50 chance for a boy or a girl. This is wrong even assuming that the probabilities are exactly 50-50 and that the events are independent.

A D > 4 目 > 4 目 > 4 目 > 5 4 回 > 3 Q Q

This is only correct if you said the oldest or the youngest, etc.

Correct answer: 1/3.

There are 4 possibilities: (G,G), (G,B), (B,G), (B,B).

"One is a girl" only rules out the last!.

Def. *E* and *F* are **independent** iff $p(E \cap F) = p(E)p(F)$.

Fact: If *E* and *F* are independent, then $p(E|F) = p(E \cap F)/p(F) = p(E)$.

Def. *E* and *F* are **independent** iff $p(E \cap F) = p(E)p(F)$.

Fact: If *E* and *F* are independent, then $p(E|F) = p(E \cap F)/p(F) = p(E)$.

Example: With 2 fair dice, the probability that the sum is 7 is *not* independent of both dice being ≥ 3 .

 $p(\text{sum is 7 and both} \ge 3)/p(\text{both} \ge 3) = 2 \cdot \frac{1}{6} \cdot \frac{1}{6}/(\frac{2}{3} \cdot \frac{2}{3}) = 1/8 \neq 1/6 = p(\text{sum is 7}).$

Def. *E* and *F* are **independent** iff $p(E \cap F) = p(E)p(F)$.

Fact: If *E* and *F* are independent, then $p(E|F) = p(E \cap F)/p(F) = p(E)$.

Example: With 2 fair dice, the probability that the sum is 7 is *not* independent of both dice being ≥ 3 .

 $p(\text{sum is 7 and both} \ge 3)/p(\text{both} \ge 3) = 2 \cdot \frac{1}{6} \cdot \frac{1}{6}/(\frac{2}{3} \cdot \frac{2}{3}) = 1/8 \neq 1/6 = p(\text{sum is 7}).$

Example: The probability that the sum of the first two dice is 7 given that both dice are \geq 3 is independent of the probability of a third die being 1 or 2.

Bernoulli trial: – an experiment with 2 outcomes; success with probability p, failure with probability q = 1 - p.

Bernoulli trials: — k independent repetitions of a Bernoulli trial.

・ロト・日本・ヨト・ヨト・日・ つへぐ

Bernoulli trial: – an experiment with 2 outcomes; success with probability p, failure with probability q = 1 - p.

Bernoulli trials: — k independent repetitions of a Bernoulli trial.

Example: Consider 2 fair dice. Throw k times. What is the probability that the first time you get a sum of 7 is on throw j, where $j \leq k$.

Bernoulli trial: – an experiment with 2 outcomes; success with probability p, failure with probability q = 1 - p.

Bernoulli trials: — k independent repetitions of a Bernoulli trial.

Example: Consider 2 fair dice. Throw k times. What is the probability that the first time you get a sum of 7 is on throw j, where $j \leq k$.

Answer: $\left(\frac{5}{6}\right)^{j-1}\left(\frac{1}{6}\right)$.

This is the same as the biased coin with probabilities p of "heads" and q = 1 - p of "tails". The answer is from the geometric distribution: $q^{j-1}p$.

A D > 4 目 > 4 目 > 4 目 > 5 4 回 > 3 Q Q

Try tree diagrams.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 善臣 - のへで

- **Thm.** The probability of k successes in n independent Bernoulli trials is $\binom{n}{k}p^kq^{n-k}$.
- **Pf.** The outcome is $(x_1, x_2, ..., x_n)$, where

$$x_i = \begin{cases} S, & \text{if the } i \text{th trial is success} \\ F, & \text{if the } i \text{th trial is failure} \end{cases}$$

 $p((x_1, x_2, ..., x_n))$, with k successes and n - k failures is $p^k q^{n-k}$. There are $\binom{n}{k}$ outcomes with k successes and n - k failures. The probability is $\binom{n}{k}p^k q^{n-k}$. \Box

- **Thm.** The probability of k successes in n independent Bernoulli trials is $\binom{n}{k}p^kq^{n-k}$.
- **Pf.** The outcome is $(x_1, x_2, ..., x_n)$, where

$$x_i = \begin{cases} S, & \text{if the ith trial is success} \\ F, & \text{if the ith trial is failure} \end{cases}$$

 $p((x_1, x_2, ..., x_n))$, with k successes and n - k failures is $p^k q^{n-k}$. There are $\binom{n}{k}$ outcomes with k successes and n - k failures. The probability is $\binom{n}{k}p^k q^{n-k}$. \Box

A D > 4 目 > 4 目 > 4 目 > 5 4 回 > 3 Q Q

The binomial distribution is $b(k; n, p) = \binom{n}{k} p^k q^{n-k}$. Note $\sum_{k=0}^{n} \binom{n}{k} p^k q^{n-k} = (p+q)^n = 1$.